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Lifetimes of flame balls dragged by model turbulent flows: Role of velocity gradient fluctuations
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An isolated combustion spot—known as a flame taB)—is considered while it is advected by a turbulent
flow of a lean premixture of such a light fuel as hydrogen. A Batchelor approximation for the surrounding
Lagrangian flow is made. This in principle gives one an access to the FB lifgtjmand to its response to the
ambiant Lagrangian rate-of-strain tenggt), by means of a nonlinear and forced integro-differential equation
for the current FB radius. For a diagong(t) deduced from random Markov processes of the Ornstein-
Uhlenbeck type, or linearly filtered versions thereof, extensive numerical simulations and approximate theo-
retical analyses agree th@j flame balls can definitely live for much longer than their time of spontaneous
expansion/collapséii) large enough values of ;. are compatible with Poisson statisti¢i;) the variations of
(tire) With the characteristics ofi(t) mirror the latter’s statistics, more precisely that of trag®( Open
problems, dealing with a nondiagong(t), ignition-related transients and/or collective effects, finally are
evoked.
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. INTRODUCTION Le<1 [3]. This and the self-explanatory estimatg
. S ~Dinten(T,) for the radiusr, of this localized combustion

~ Forallits practical implicationfl-3], the turbulent burn-  spot make it plausible that a FB @¥(r,) size could resist
ing of premixed gases is a central topic in combustion scityrpulent stimuli a flamelet would not (T, ) <ten(Ty) if,
ence. Also, its modelling still constitutes a theoretical chal-as is ysual, the Zel'dovich number Ze- 9 logts/dlog Tris
lenge, because of the many space/time scales and the variQggge whencet.,(TR) is strongly sensitive to the reaction
nonlinearities(reaction rates, hydrodynamics, radiafion- temperaturel . Hence the notion of envisaging FBs as ba-
volved. sic “objects” dragged by the flow for the premixed combus-

~ The current models of turbulent combustion in galses  tjon of light fuels under conditions of vigorous turbulent stir-
invoke flamelets as building blocks, namely locally laminarying,

flame fronts idealized as surfaces convected by the fresh tur- The pasic(i.e., adiabatic and convection-fieEB is un-

bulent medium and propagating relative to it at a normaktaple, howevef3,4]: it spontaneously tends to shrink then
velocity comparable to the burning speegl X of a steady  extinguish, or to expand radially and evolve into a thin
flat flame. _Balancmg convgcuon of fresh gas normal _to thepropagating fronf5]. Stabilizing processes have been iden-
flamelet with heat conductiofthe propagation mechani$m  tified and can preclude such tren@s7]. They share a com-
and chemistry classically[2] vyields the estimates mon structural property: they all maRe slightly decrease,
Din/ten(Ty) and Dy /S, for S and the actual flame thick-  with a 5Tz=Tr— T, <0 and at least linear in the current FB
ness, respectively. In thesBy, is the fresh gas diffusivity radiusrg(t). The net result is that- may ultimately settle at
and t.y(Ty) represents the characteristic time of chemicala larger value than,. For very lean/diluted btair premix-
heat release evaluated at the burnt gas temperaduie a  tures, the radiation losses do the job, enabling FB’'s to be
flat flame. observed up to 80 minutes at micrograv[y]. With less
Whenever the turbulent velocity fluctuations and the diluted and/or with preheated mixtures, the radiative cooling

corresponding gradient#/| at scalel of maximum dissipa- time would be too long compared tg,(T,) to achieve FB
tion cease to satisfi>D,,/S, andV/I<1/t.(T,), flamelet  stabilization. Whence apparently little hope is left for FBs to
models cease to be viable, however. Broadened flames, §€ thought of as sensible starting points to model the
well-stirred local reactor§l], are usually alluded to when strongly turbulent combustion of light fuels.
modeling such situations. When the deficient reactant is mo- Yet a localized combustion spot @(r;) size advected
bile enough to have a molecular diffusion coefficiéntvell ~ by a turbulent flow, Fig. 1, also feels tf@(V/I) velocity
aboveD;, (Lewis number, LeDy,/D=0.20—-0.30 for hy- gradients in the surrounding fresh mixture; because heat and
drogen[H,] in air), another issue is conceivable. It would reactant transports respond differently to nonuniform/
involve the localized three-dimensional combustion sp8ts unsteady flowfield if Lec1, this affectséTg hence the FB
known as flame ball§FB) as building blocks. The basic FB, dynamics. As shown ifi5], the order-of-magnitude estimate
corresponding to spherically symmetric and convection-freeTr/T, ~ (D~ Y2=D ¥ (V/I)Y4 <0 holds true if |
balances between diffusions of heat and reactant and chen#=rg. Thus, the interesting distinguished limit to consider
cal heat release has a reaction temperaiwef T, >T, if hasV/I ~Ze*2DthrZ’2, because this yieldsTg/T, ~Ze !

and hence fully exploits the nonlinearity of thg,(Tg) law.

Also, havingsTg<0 and linear irr - almost brings one back

*Electronic address: dangelo@lcd.ensma.fr to a familiar situation.
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merical method to solve the EE is summarized in Sec. IV. In
Sec. V, we report on raw numerical findings: memory ker-
nels, heat-loss functions, FB trajectories and lifetimes, and
statistics thereof; these are compared to tentative theoretical
interpretations in Sec. VI. Section VI C aims at extending all
this to non-Gaussian velocity gradients. We end up with con-
clusions and open problems.

II. MODEL AND EVOLUTION EQUATION

Like in [10], we envisage a turbulent premixture of a
deficient mobile fuele.g., H) and of an abundant oxidizer

FIG. 1. An isolated flame ball advected by a turbulent flow.  (e.g., aiy, and focus attention on an isolated flame ball

dragged 23,24 by the turbulent motion¢see Fig. 1

The above estimates imply that the spatial saalev/1) The selected combustion process is the one-step irrevers-
~1, where flowfield nonuniformity effectively plays a role, iPle reaction ‘F— products-heat,” whereF stands for the
is large[of orderO(Ze rg)] compared to the FB size. This fuel. Itg volumetric rate of consumptiow will follow the
scale separation enabled di% to show that not-too-intense Arrhenius law:
combinations okteadyshears, strains, and flow rotations can

. - ’ ’ Ty)= ~Ta/T 1

effectively stabilize a FB atg/r,=0(1). Thanks to the fact WT,Y)=py exp(—Ta/ T/ teal @

that the time of spontaneous evolution f aboutr; is  that involves a collision timé.,, and an activation tempera-
O(Z€rEIDy)>1E/Dy, [9], implying quasisteady evolutions ture T, large compared to all the temperatufBsncoun-

of the FB core, the conclusion was recently extended to FB'sered. The mixture density is denotgdand is assumed to
embedded in periodic or quasiperiodic uniform shearing okary like 1/T. The fuel mass fraction ig.

straining motions ofO(Dy,/Z€?r3) strengths: the integro- The mass and energy conservations and the fuel balance
differential, nonlinear evolution equatid&E) derived forr ¢ are respectively written as

in [10] then allowed for limit cycleqor kins) as attractors

corresponding to infinitely long-lived flame balls, as first evi- dp+V-(pv)=0, (2

denced numerically and by formal asymptotid®], then

rigorously proved11]. pC(AT+V-VT)=AV?T+Qw(T,y), (€
To get closer to the physical situation depicted in Fig. 1,

we consider here the dynamics of an isolated FB subjected to p(dy+v-Vy)=pDV?y—w(T,y), (4)

random, yet again spatially uniform like if10], velocity
gradients. The motivation is as follows: occasionally large
values of the rate-of-strain tensor that a FB embedded in
turbulent flow experiences can possilalyvayslead to extin-

In Egs.(2)—(4), Q is the heat of reactionj;(-) denotes
ifferentiation in timet andv is the local velocity vector in
the Cartesian frame= (X1 ,X5,X3) attached to the flame ball

guishment, contrary to bounded periodic/quasiperiodic€eMer" =[x|=0. We consider the specific heet the heat
stimuli. conductivity A and the producpD of density by the fuel

Since the EE recently established for [10] involves diffusivity D as prescribed constants. The Lewis number Le

memory kemnels, the very possibility of a fluctuation-induced = Pin/D =M/pDc is thus constant and assumed to be mark-

limitation of FB lifetimes raises the question: how to initiate €dlY 1€ss than onée.g., L&, 4;=0.20-0.3). Far from the

the dynamics. This “past-boundary-difficulty” could be flame ball, we require

eliminated upon explicitly accounting for an ignition device

(or a mathematical analog thereof in the)EBnfortunately, y(+o,)=yuy, ®)

the resulting dynamics is not easily interpreted if no infor-

mation about the intrinsic role of velocity fluctuations is

available beforehand. To display the latter in an as pure as

possible way, we shall here content ourselves with studying a

switch-on problem: the velocity-gradient fluctuations are ar

tificially suppressed.for all negative times then restoyed at r>re(1),” rp being the current flame ball radius.

=0 and allowed to influence the su_bsequent dynam|cs_. The The rate of strain tens@; of elementgy;; (t), satisfies the

EE for re(t), once properly discretized and solved, g|vesincompressibility condition ]

numerical access to the individual FB histories, then to their

statistics. tracdg)=V-v,,=0 (8)
The paper is organized as follows. The physical model for

a flame ball is presented in Sec. Il, along with a sketch of thdor the sake of compatibility with Eqq7) and (2), and is

derivation that leads to an evolution equati&f) for the FB assumed to vanish on time average:

radius. Section Ill is devoted to the generation of random

velocity gradients and to the switch-on procedure. The nu- gij(t)=0. (9)

T(+o,t)=T,, (6)
V(" 1) = g(t) - X= V., (7)

‘wherey, and T, are given, and &%” in Eq. (7) means “for
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The present work next considers i¢'s to berandomfunc- (47D)Y?5y., jt s[ re(t) re(s) ”
—_= 14

tions of time, with a common autocorrelation ti and 32 Q12 '
identical PDFs. e Yu (t=s)™ RALS)
In absence of any flowv=0) and for steady configura-
tions, Egs. (2)—(7) admit the first-integraINT+pDyQ
=\T,+pDy,Q. Settingy to zero in it defines the reference
reaction temperatur@, =T,+(T,—T,)/Le whereT,=T,

where X(t,s) is the determinant of an auxiliary symmetric
tensorb(t,s), defined by the coupled ODE(svith the usual
convention on repeated indiges

+Qy,/c is the final temperature in a flat flame propagating abii=8;+g;by+byg, for t=s,
in a fresh mixture that hag=y,, T=T,. In the limit Ze . . . .
=T,(T,—T,)/T2—+= of large Zeldovich numbers we byj(t,S)=(t—5)8;+ - for t=s+0. (15)

again adopt here, the steady convection-free flame ball has
chemical activity confined to a thin spherical shettr;  Note thatb;;=(t—s) 8; andX(t,s)=(t—s)? for g;;=0; this
=0(rz/Ze) with (see[5,10] and the references thergin also holds true ifg;; = —g;; . Substitution of Eqs(13) and

) (14) into Eq. (11) then Eq.(12) yields [10] the evolution
T(Tp—T T i .
2f§:D(TR)tcou( al b2 u)> ex;{—a equation forrg(t):
TR TR

(rF(t)) _1-Jle 1
log =Ze

© 2le (4wDy)Y?

(10

and, here,Tg=T, and henceg=r,. Such a flame ball is
unstable[4] and the typical time; for spontaneous evolu-
tions of re—ry is t;=Z€e’r2/Dy, if 0<1—Le=0O(1) and xft
Ze>1 [9], hence is long compared to the conduction time

r%/Dth. Insofar as their reaction-shell radiug(t) remains

O(r5), flame balls evolving oveD(t,) time scale have a in which the nonzero tensay intervenesvia the solution
quasi steady near-field=0O(rg), where unsteadiness and P(t,s) to system(15). Notice that despite the formal symme-
convection may be neglectd8,10]; the convection due to try between Eqs(13) and(14), and Eq.(11), 6T does not
are#0 may also be neglected in the far figls O(Zerz) ~ vVanish when 8<1—Le=0(1), sothatrg may differ from
whereT=T, andy=y, and unsteadinegand imposed con- [z without violating the working assumptions employed to
vection if g(t) # 0] plays a role. Matching the near-field and derive Eq.(16).

rz

re(  re(s)
(t—S)3/2 xl/Z(t'S)

ds (16)

—o0

far-field profiles of T andy reveals that Eq(10) still holds In the general casey is nonsymmetric. lts skew-

for the currentr (t), providedTg is shifted fromT, to T, ~ Symmetric part is knowfil0,12 to make the influence of the
+ 6T, with straining parts milder on such displacementséds, dy..
andoTg. The effects are thus maximum whep=g;; . For

STR= 0T+ (T, — T 8Y.. 1y, . (1)  analytical convenience, we further restrict ourselvesgto

=diag(g.(t),92(1),95(1)), with g;+9,+9s=0 by Eq.(8),
In Eq. (11), §T.. and dy., are displacements, induced by corresponding to pure straining mothns.. Equat(thl_ﬁ) can
unsteadiness and/or forced convection in the far field, of th&en be formally solved fob(t,s)—which is also diagonal
ambient temperature and fuel mass fraction actually felt by this case—by quadratures.
the flame ball core. The corresponding(t), given by Eq.
(10) if 6TR/T,=0(Ze™ Y, reads IIl. NOISES

A. Random rates of strain

2 5TR Ta . . .
(relry)c=exp — T (12 The strain rates are written in the form
* *
)7 t
to leading order. Provided the velocity gradiegts(t) fea- gi(t)y=—I —|, 17)
tCOf tcor

tured in Eq.(7) are O(t; ') and evolve on the.,,=O(t,)

scale, Eq(12) holds and the fact thatis not identically zero where t.,,=O(t,) is their common correlation time. The
contributes todTx at the same order as unsteadiness. As ﬁrSTi’s areO(1) and dimensionlesg; is a pure number, mea-
shown in[12] the then lineaf p=p,, negligible w(T.y)]  suring the intensity of the;’s in 1/.,, units. For a solid-
Egs. (3) and (4) can be solved analytically in the far-field body rotation|u|= 2. For the sake of definitenesg>0

when Eq.(7) holds, with the leading order matching condi- js assumed. Settingt.,,=u, the';’s are computed as
tions: T—TYr—(T,—TYreg and -y )r——y,rr as

r/Ze—0". Through two-term matchings, this altogether 1
yields[10] Fi:Hi_§(Hl+H2+H3) (18
12
(47Dy) ""oT. ft 5[ re(t) re(s) from three independent Ornstein-Uhlenb§tR, 22 stochas-
T~ Ty e (t=9)%% R¥At,s))’ tic processesi;(u) [25]; the latter are numerically generated

(13 by means of the recursions
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Hi(un+1)_Hi(un) __ Hi(un)

50 1 + &' k(Su)

(19

where Su is the scaled time step,=ndu, «(Sdu)=(3/5u
X (2—6u))Y? and thes!" are random numbers sampled uni-
formly over[—1; +1], independently oh andi; for u,<u

<U,.1, the H;(u) are assumed piecewise linear, and are

continuous at the mesh points.
For ndu>1, the H; are Gaussianly distribute[®6,13,

have unit variance, zero time and ensemble averages, and

their autocorrelation function is exp(ul) [and hence their
temporal spectral density is (1+ »?)~!]. By Eq. (18), the

I';’s sum to zero, are Gaussian with a common rms value of

(2/3)*2, and are also exponentially autocorrelated.

B. Nondimensional evolution equation

Settingrg=r,R(u) and usingu as dimensionless time
variable converts Eq16)—after some rearrangements—into

R(u)—R(v)

| Ay o rlogR- AR, (20

in which all the relevant physico-chemical properties of the

gaseous mixture are lumped into the single parameter

2Le

1-+Le

This grouping essentially measurgg,, in units of t;/4,
since 2Le=1—/Le for Le=0.25. Should the quasisteady
limit 7>1 be considered later on, the limit>1 would also

T=47—

2
n ) t,=2€’r3/Dy,.  (21)
z

be needed, as the velocity gradients would otherwise cease to

influence the FB dynamidsee Eq(17)] for R<O(1). The
symbolA(u,v) is a scaled version of the determinait, s)
of the b tensor featured in Eq413)—(16); in the present
case, it can be explicitly derived as

s u w
A(u,v)=i1:[lf eX[{—Z,u,fu Fi(f)dg)dw (22)

once the incompressibility Conditioiﬁis:ll“izo is made use
of. As shown in[10], A(u,v) is strictly larger than
—v)? for u>v, whenever all thd’;’s are not identically
zero. The scaled heat-loss functiéfu) >0, appearing in
Eq. (20), is defined by

A(U)=fux( U))dv.

It would assume the constant valBg0)= !, with

1 1
(u_v)3/2 Al/2(u’

(23

+ o0 3
|zf (1—1_[ F(I‘i(O)W))W‘3’2dw, (24)
0 =1

F(Z)=(Z/sinhz)?, (25)
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FIG. 2. Static response curve: the equat®(0)/y/7=log RIR
admits two solutions ifA(0)<+/7exp(-1). Too strong constant

strain rates quench a flame ball Af(0)/7>e™2.

if the I';’s were constant§=1I";(0)]. Equation(20) would
then admit constant solutionR’s [ =R(0)] given by the
rootsR. (with 1<R_<e andR, =e) of the equation

A©) _logR
R

that exist if and only ifA(0)<\/7exp(-1); see Fig. 2: too
strong, steady strain rates will quench a flame ball, e.qu, if
is too large[indeed,A%(0)/7~ (u/7) then simply measures
the intensity of they;(0)’s; see Eq(17)]. For future refer-
ence notice that—as first suggested[ik2]—the integral
1(I'1(0), I'»(0), I'3(0)) featured in the RHS of Eq24) is
close to a function of the “total strain”

(26)

I=[T3+T3+T3])2 (27

only, here evaluated at=0. We numerically ascertained
that, whenl';+T',+T'3=0 as required by Eq8), the inte-
gral | is almost undistinguishable from the formula

2 _\/8
l (Fla FZ! F3) 3r:

that actually is exact when thé";|’s are in the ratios 1:1/
2:1/2[sincel (1, 1/2, 1/2)=v2].

(28)

IV. NUMERICS, PAST BOUNDARY DIFFICULTY

A. Fluctuation switch-on

Whereas the lower boung= —< in the LHS of Eq.(20)
poses no convergence problém(u,v)>(u—v)?], the use
of randomGaussiarH;’s implies that one of them may oc-
casionally take on a large absolute value, at which times the
I'’s may also get large for long enough to extinguish the
flame ball. The net result is th&(u) cannot live for infi-
nitely long and, in particular, cannot have lived since
— 00

To cure this past-boundary difficulty, that in a sense is
analogous to the cold-boundary difficulty in the theory of
steady planar premixed flamgs], the following procedure
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FIG. 3. Sample memory kernels™Y%(u,v) for two values of
current timeu, andu=5. The fast decrease with increasing v is
worth noticing.
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calculation ofA(u,v) for long timesu andv would require

to store a two-variable array with several tens of thousand
elements in both time variables, for each realization of the
H;’s, before any attempt at solving E¢RO). This storage
difficulty can be circumvented once one has noticed that
A(u,v) in Eg. (220 can be written as A(u,v)
=Hi3:1Ai(u,v), and that theA;(u,v) are also accessible
from the differential system

dA;
Jv

—wi(up), A=0 atv=u, (30)

(?m'i

Jv (3Y)

Z—Mfi(v)mi(u,v), w;=1 atv=u.

In these ODEs, integration is performed with respecv to
=<u, at fixed y whereby no two-variable array at all needs be
stored prior to the resolution of ERO).

of fluctuation switch-on was devised. For a given sample

triplet [T'1(u), I'y(u), T'3(u)], we made the substitution
I';(u)—T,(u) with

Ti(uw=I,0) for u<0, T;(u)=I(u) for u=0,
(29)

along with the corresponding changes in E@®) and (23).

In particular, the modified heat-loss functioh(u<0) is
equal toA(0) for negative times, as it is given by E@4).

For negative times, the dimensionless flame ball radius

R(u<0) was chosen to be the largérence stablgl1]) root
R, of Eq.(26), if any. WheneveA(0)> 7 exp(—1), a new
triplet of I';(u)’'s was sampled afresh. This “fluctuation

switch-on” procedure is analogous to rendering the chemical

time infinite below an ignition temperatuf@ssumed to be
crossed at the coordinate origim premixed-flame theory
[1].

BecauseA " Yqu,v) decreases rapidly as—v increases
(see Fig. 3 implying rapidly fading memory effects, the
transient resulting from the reintroduction of fluctuations is
expected to be shofd<u=0O(u~1)] and negligible at the
scale of the flame ball lifetimeay;;., especially ifu;;e>1.

B. Random processes

Handling the recursioif19) poses no particular problem,

D. Integrating the evolution equation

To integrate the evolution equatigq20) for the dimen-
sionless FB radiu®, we proceed as follows. The differential
system(30) and (31) is advanced in time thanks to a multi-
step, variable-coefficient, stiff ODE solvgd4]. The left-
hand side of Eq(20) is split into two integrals, for negative
and positivev respectively; for negative, R(v)=R, [see
Eq. (26)]. These two terms can then be processed as

U R(U)—R(v)
e AMup) Y

0
~RW-R) [ A Fuod

u—adou
+R(u)f A~ Yu,v)dv
0

u-su  R(v) u  R(U)—R(v)
_JO AlZ(U,U)dU+ u—su AY4(u,v) v
(32

For numerical consistency, the integration is first performed

from —oo to u— 6u whereéu is the time step size. The last

integral in EQ.(32) can be evaluated as

provided one makes sure it has started long enough before

u=0, so that theH,’s have already forgotten the initial con-
ditions. Our numerical simulations employed*1®lank”
steps, with asu of 10”2, As the latter is meant to be smaller

' %)zi(v)dsz(R(u)—R(u—éu))/@.
u—4au (U,U)

(33

than all the relevant time scales of the problem, in particular
(u—v)=0(1/un) (see Sec. V| u's larger than 10 could not  The scaled heat-loss functigk(u) defined by Eq(23) can

be handled at reasonable CPU cast in a reliable way.

C. Kernel storage

Even though an explicit expression faru,v) is avail-
able, Eq(22), better numerical accuracy and stability were at
first found upon directly integrating the differential system
(15). However, if this procedure were applied abruptly, the

also be split into parts:

0 1 0 1
Alu)= fo(u—v)?ﬂzd”_ J,xAﬂZ(u o)
o1 1

(39

. o

(u_v)3/2 AlIZ(U,U)
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1
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0 0.5 1 15

FIG. 4. Sample reduced memory kernel§(u,v)=(u
—v)¥% A2 for two values of current time (same runs as in Fig.
3).

The first term of the right-hand side of E@4) equals 2{/u.
The second term already appeared in EB39). For a given
discretization timeu,,;, we approximate the third integral
in the right-hand sidéRHS) of Eq. (32) assumingR(v) to

be piecewise lineatbetweenu, and uy. ). The integrals
involving A~ Y%(u,,. ;,v) are also computed by means of the
trapezoidal rulgi.e., assuming\ ~Y%(u,, ;,v) piecewise lin-
ear betweerv, anduvy,4]. Last, the evolution equation is
discretized semi-implicitly in time: the linear terms are
treated implicitly[i.e., with R(u) evaluated at timei, 4]
whereas the nonlinear terms are treated expligits., with
R(u) evaluated at timel,]. At anyone time step, this proce-
dure leads to a linear equation f&;, 1, the coefficients of
which depend on the whole past history’f Notice that the
integrals inv involving the kernelA ~Y%(u,.;,v) need be

PHYSICAL REVIEW E 69, 036304 (2004
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FIG. 5. Ensemble average of the reduced memory kernel

K(u,v) vsu—v, for different values ofu.

—0)¥IAYV2=C(u,v) varies with v=<u at different fixed
positive u, making it clear that the memory kernel involved
in the LHS of Eqg.(20) fades much more quickly than in
absence of velocity gradienfg(u,v)=1 for uI';=0], es-
pecially when|y/| is large; the latter trend, meaning that ran-
dom incompressible straining flows of increasing intensities
have better and better mixing properties, is illustrated in Fig.
5, in terms of the ensemble averadéu,v)) of the memory
kernel for different values oft. Notice that/C(u,v)—1" as
v—u~. Indeed, one can show from E@2) or Egs.(30) and
(31) that 1- K(u,v)~u?(u—v)?22 ;T'3(u) in this limit,
which suggested to us that-v=0(1/u) is the right range
of memory effects for large enougkis. As compared to the
spontaneous dynamid®], wherein a 1/2-order derivative
was involved[ AY(u,v) =(u—v)*? then), the linear opera-

reevaluated at each new meshpoint, since the kernel explido" in the LHS of Eq.(20) is here closer to a “thickened”

itly depends on the current,, ;.
Whenu—v equals one or a few time st éu, evaluat-

first-order derivativgsee Eq.(A1l) of Appendix Al.
A sample heat-loss functidi27] A(u) is displayed in Fig.

ing the integrals as above is not accurate enough. We thefhand compared to one of tig’s that yielded it due to the

had to subcycle the time stepping procedure with a smalle!

step sizedug., equal to a fractior{1/10 or 1/20 of Su.

E. Benchmark

In order to validate the whole numerical procedure, we
applied it to a benchmark where an analytical solution can be

found for A(u) if R(u) and the kernel are givea priori.
Namely, we choose to solve the equation

f_u (R(U)—R(v))W(u—v)dv=+/rlogR—A(U)R,
(35)

with R(u)=R, —1+cos{). If W(u—v)=(u—v) %2 the
expression foA(u) then involvegtabulated sine and cosine
Fresnel integrals. Retrieving the knovig{u) from thatA(u)
was the test successfully passed by the proce@de-(32).

V. RAW RESULTS
A. Memory kernels and heat-loss functions

Figure 4 illustrates how the reduced memory kernel (

jntegration steps involved in Eq$30) and (31) then Eq.
(23), A(u) is smoother than thE;’s. Whereas thél;’s have

14 T

R(t) -~
12 } A(t) 1
It

100 1 1
TS R VR WA S
4 }f
5 | ]
0 WMWMWWWW
2 0F 7
-4 : . : : '

0 15 20 25 30 35 40

Time

FIG. 6. Time evolution of sample flame-ball radi(R), heat-
loss function(A), and first reduced rate-of-straln,(u) for u=5
and 7=100. Notice thaR and A are anticorrelated, whilst the cor-
relation betweerA and|T'4| is positive at largéTl’;|’s.
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[ and AZ

25 30 35 40
u

10 15 20

FIG. 7. Sample squared heat-loss functiéh (top) and total
rate-of-strainl =[T'5+ '3+ T'3]Y2 (bottor) vs time u. Notice the
positive correlation between both functions, and the small detdy (
is late between them(To ease readibility, each curve has a differ-
ent vertical scalg.

exp(—|u—u’|) as autocorrelation function, that ofA?
—(A?), Ga2(£é=|u—u’|) is more regular ati~u’. (See also
Fig. 7) The autocorrelation functiog2(£) turns out to be
almost undistinguishablésee Fig. 8 from

L e

(36)

with v=2 and G,2(0)=0(w) for large enoughu’s. The
corresponding spectral “energy” density(w) is then pro-
portional to u/(1+ w2/ v?)(1+ w? w?). Put in words,Gx2

PHYSICAL REVIEW E 69, 036304 (2004

14
12 +
9 10
-
[~ 8
3
E
[ 4t
2t ! v
0 . . . . .
0 20 40 60 80 100
Time

FIG. 9. Sample time evolution of a flame-ball radids The FB
radius shrinks to zer¢extinction at a finite time. The dashed hori-
zontal line represent8=e, which R(u) occasionally crosses for a
short while.

I'; numerical simulations gave us ample evidence that the
difference is immaterial whep is large enough.

That such a simple fit as E§36) works so well is sur-
prising, in view of the nonlinear operatiori22) and (23)
needed to gefA(u) from theH;(u); anyway, this is compat-
ible with anO(1/i) range of memory effects.

B. FB-radius trajectories and statistics of lifetimes

As illustrated in Fig. 9, a flame ball cannot live for infi-
nitely long; R(u) eventually shrinks to zero at some finite

happens to nearly coincides with the normalized autocorretime uj;;., that depends on the parameterfEq. (21)], «

lation functionGy of I'—(T"), provided thel;'s are filtered

with an O(u) cutoff frequency, a process henceforth desig-

nated as j filtering,” otherwise, Gr(£) turns out be very
close to expf1]€]). Strictly speaking one should distinguish
a total strain deduced from-filteredI';’s, from a u-filtered

1 ‘ I | .
0.9 - -
08 r -
07 | -
06 1 _
051 _
0.4 | -
03 | |
02} |
0.1} —

0 1 L ! B
0

Autocorrelation of A2

Time

FIG. 8. Numerical autocorrelation functiog2(¢) of the
squared heat-loss functiak? (dashed lingfor u=9. The solid line
represents the fitting functidrsee text, Eq(36)]. The agreement is
even better for 5 u<9.

[Eqg. (17)], and on the specific realization of thg(u)’s.

Figure 10 shows histograms afi;. at fixed values ofu
(=5) and 7 (=100), and for many(=2992 realizations of
the H;(u)’s. Let(u)iso) denote the ensemble average of the
Uiite’S; as shown in Fig. 10, the fit

1 1 ;{_ ulife)
(Uiite) = (Uiite) & (Uiite)

(37)

0.03

0.025 |

0.02 r

0.015

M(uye,)

0.01 |

0.005

0 . { H THnmnr—
0 80 100 120 140

0 20 40 6

Uiife

FIG. 10. Numerical probability density function of lifetimes
IT(ujise) for w=5 andr=100(vertical bar$. The solid curve is the
exponential fit given by Eq(37). The finite duration of the FB
guenching process is visible at smajj.’s.
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Log <uy;r.>
Log <uy;e>

0 - . : : . . 40 60 80 100 120 140 160 180
40 60 80 100 120 140 160 1
T

FIG. 12. Ensemble-averaged lifetin{e;;e) as a function of

FIG. 11. Ensemble-averaged lifetin{eire) as a function of  parameterr, for =5 and explicitly filtered stimuli, and corre-
parameterr, for u=5 (symbol$ and corresponding fitting curve sponding fitting curve[solid line, Eq.(38) with k=1 and C=
[solid line, Eq.(38)]. The (ujie)’'s corresponding tor=100 and  —2.85]; compare to Fig. 11. The error bars resulting from the finite
150 and the listed differeni’s are also represented. The error bars number of realizations are given by the height of the symbols.
resulting from the finite number of realizations are given by the
height of the symbols. ing spectral density being~(1+ w?)~2. The resulting

(ujitre) is exhibited in Figs. 12 and 13 as a function©fu.

satisfactorily represents the PHF(-) of ujj;e, as soon as [nterestingly, the fitting curvagainis given by Eq(39), yet
Uiire €xceeds 2-5. The variations ¢fiire) with 7 for u  with k=1; parameteiC is now —2.85 instead of-3.185;
=5 are shown in Fig. 11some computeduite)’s for other  parameter$ andc have the same numerical values of 0 and
w’'s and for7=100 and 150 are also displaye&or u=5, it 1, respectively.

turns out for that the results can be accurately fitted by Going one crank further, i.e., defining’s from theh;’s
_ 24 ¢l by equations similar to Eq39) (with the last term replaced
(Uiire) =exp(@(r—b)*+clog 7+ C), 38 pyh Va3 to ensuré y?)=1), did not change the above fit of

(ujite) significantly, even though eack;’s spectral power

with a=(k/uJ)?, J=17, k=1.275,b=0, c=1, andC= 23

—3.185[28]. density is now~(1+ w
The very fast growth ofuize) with 7, at fixedu, is worth

noticing: for =5, we could not make statistically signifi- VI. TENTATIVE INTERPRETATIONS

cant calculations beyongd=160, in which casguise) is of A. PDF of lifetimes

about 1850 and requires several weeks of CPU for 110 runs

on a 2.4 GHz PC. Besidesy,;;.) decreases rapidly a8 Because of the very structure of EQ4), the response of

increases, especially at largis (see Fig. 1L R(u) to the fluctuating heat-loss functio# or A) is not
local in time. However, the fast decay af Y%(u,v) with

C. Explicitly-filtered noises increasingu—v implies a localized response: only the im-

To evaluate the influence of the smoothness of the random 8 — . . :
entries, we repeated the above procedure, replacing the
Ornstein-Uhlenbeck processéf’s by more regular ones 7r
now denotech;’s. To this end, we applied a first-order low-
pass filter, with a unit cutoff time, to thid,’s before calcu- N
lating thel’;’s (then denotedy;’s). The ODE’s for theh;’'s __f_'=’
are v.s
3
. h; 4r
hi=—T+\QHi, (39
3 F
where h,=dh;/du and the piecewise linear;’s are still 2 s - : :
computed according to Eq19); to ensure that thé,’s (or 200 250 300 350 400
the x;'s evoked below have the correct regularity at the T

mesh pointg, the numerical code was provided with 'analyti- FIG. 13. Ensemble averaged lifetinfey;;.) as a function of
cal integration formulas foh;(u,.1)—hi(uy). Equations  parameter, for =10, and corresponding fitting curysolid line,

(39) being linear, theh;’s they define are still centered gq. (38) with k=1 andC=—4.1], for explicitly filtered stimuli.
Gaussian processes, with?) = 1. Their common autocorre- The error bars, due the finite number of realizations, are given by
lation function isG, (&)~ (1+]|€])exp(—|4), the correspond- the height of the symbols.
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mediate pasti—v<1 matters. As a consequence, one may

admit that a localized criterion for extinction would exist; the

latter will depend onr, u and A(u) in some neighborhood

[=0O(1)] of the times it is met, but, on average, not on the

precise times this occurs, if the possibility is a rare event.
Let 14/ be the average rate at which this may octue

implicitly assumel{>1=the correlation time of théd;’s).

Since a flame ball extinguishes only on&&(uj;;.)dujise IS

the probability that the extinction criterion would be fulfilled

in the interval[ Ujise ; Ujise T dujise[ for the first time accord-

ingly TT(uyise) must satisfy

yand A?

q 40 45 50 55 60 65 70
Uiife Ti
40 me
S, (40

Ujife
IT(ujite)dujire = ( 1- fo IT(u)du

FIG. 14. Sample squared heat-loss functidn(top; thick line

afctraim—[ 24 24 +2711/2 < thin ling i
the first factor in the RHS expressing that extinction did not?nd total rate-of-strainy=[y1+ y;+ y5] © (bottom; thin ling in

. : . . the filtered-noise case. The correlation betwéénand y is more
take plface pno'l’ztm?"”e ' Equ_zt'%n(d'o) yfg_slll_[(u”fe)_ mt:]he apparent than in Fig. 7. Some filtering still exists betwgemdA?,
'Sdame'f' Oém aﬁ hq. 7), Er%\_/l[ e <ulife>_— A. (Uiite) '/Z US  and the latter is again slightly late with respecty@i). (As in Fig.
Isuemng(;etovglé i;d(aer?er(r)ldzﬁltg{ (E}elrj unit :;wrgté:;tlje-r)eitir;czz-n 7, each curve was scaled differently to ease readibility.

lite s
criterion be met byA(u) [30]. Note that the rms fluctuation , ] o
of Ujire aboUt(Uyire) IS (Uyie) itself when Eq.(37) holds.  'OrS: withT'(u) defined by Eq(27). In the formal limit
The error bars in Figs. 11-13 merely correspond to the un=— 1+ We exploit here, only the immediate past0—v
certainty (~<ulife>/\/ﬁ) on (ujire) brought about by the ~1/u significantly contributes to the dependency?gii) on

numberN of numerical runs being finite. theI';(u)’s. We then expand the inner integrals in Eg2)
as

B. Dependence of uji;e) 0N noise properties

The foregoing tentative interpretation of E§8) rests on w _ : 5
a result established by Ri¢&5] and Kac[16]: the probabil- ®], [i(§)dé=ul'i, (U)(W—u) + O, (U) w(W—=U)?).
ity 1/ per unit time that a stat.iopary random procegs!) (42)
would cross a threshold,;; satisfies
. +m|X|H(X L X)dX (41) In Eq. (42), T';, (u) stands forl";(u) once averaged over an
U J- ert ’ O(1/u) interval of time preceding and hence represerits
evaluated at someu, in this interval [0<u—u,
whereII(X,X) is the joint probability density oKX andX  =O(1/u)]. The averaging brings about &) upper cut-

=dX/du. Whenever the crossing is a rare event, e.g., whe®ff frequency, and hence reduces the rms value of thes
X.rit lies in the tail of the PDF oK, Eq. (41) also gives the below (2/3}2 by anO(1/u) amount, since th&|’s spectral
PUT that maxK)=X.;, up to a factor of 1/2. Our present Power density decreases like ? at high frequencies.
strategy is to try and apply E@41) to X=A?(u) assuming

that the criterion for FB extinction would correspondAd 7
>A2..; a way of estimating\?,,, itself is presented in Ap-
pendix A.

Relating A(u) to theT';(u)’s

The above approach first requires to relate the statistics of
A(u) to theT';(u)’s that generate it. The way the integrand
appearing in Eq(23) varies withu—v andu (cf. Fig. 19
makes it clear that the heat-loss functidfu) becomes
larger whenever ¥V%(u,v) fades over a shorter—v lapse
of time. Inspection of Eq(22) reveals that at least one of the
|2uT;|'s must get momentarily large to achieve this. Generi- 0 -— : : : : : :
cally this occurs when 2>1 (a reasonable assumption 186 188 19 192 194 196 198 20
since 2u=10-20) and/or ong31] of the |H;|’s (or h; or ; v
in the explicitly filtered casgsoticeably exceeds their com-  FiG, 15. Sample integrand 1/ v)¥?— 1/AY¥(u,v) [Eq. (23]
mon rms value; in the latter instance thel';|'s are in the  of the scaled heat-loss functiéx(u), as a function of, for a fixed
ratios 1:1/2:1/4see Eq(18)] within O(1/uI") fractional er-  time u=20 and foru=5. Note the maximum at(u—v)=1.
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Next, performing the outer integrals in E@2) produces
to leading order the samél’;, ,I'5, ,I'5,) as in Eq.(249),
now evaluated in terms of thig;, (u). Employing Eq.(28),
one getgsee Figs. 7 and 14

A%(u)

Tﬁzr*(UHS(U),
N3

with a delayed and filtered total straih, (u) defined analo-
gously to EQ.(27). The terme(u) in Eq. (43), stemming
from the RHS in Eq(42), is certainly nonnegative fok(u)
may vanish if and only if all thd";’s identically do, and is
formally o(1) in the limit wu—co. More precisely,

(43

I‘Ii-k

J72 (44

dW~2Q@MIhI%)

with b;=0(1).

As an attempt to reduce the influencesdfi) in Eq. (43),
and better specify the aforementioned delay u,, we
chose to make the approximation that fhg's would sat-

isfy

o .
;Fi*z—l—‘i*-i—l—‘i, 0<a=O(1) (45)

Compatibility with Eq. (36) then requireda=1 once Eq.

PHYSICAL REVIEW E 69, 036304 (2004

Log PDF(A%) + u

Alu

FIG. 16. Probability density functions @? for u="5 (bottom)
and u=9 (top) as a function ofA%/ . (To ease readability, we
artificially shifted the curve$.The fitting curves are proportional to
A? uxXexp— (A w)?202, with o?=8/3X(1+2/u)" ! (dashed
lines) and ¢®=8/3x (1+0.4/u) " (thick solid lines. Notice that
the quality of the fits improves gs grows.

2
12
o

(Uiite) exr{ -

for {ujie) =U corresponding to a presuméd,;; . Recall that
the w2 factor in Eq.(47) comes from the@(w) upper cutoff
frequency brought about by the averaging ower v
=0(1/u) in Eq. (43); and 0<k’?—1=0(1/) comes from
the frequencies oveO(u) having been filtered out from

k' A2

crit

4ulvi

1 Agrit

(47

(43), with e (u) neglected, is made use of. We are fully awarel";’s that have~ w2 power spectral densities at=0(1).

that a more sensible modeling of thefiltering process

would employa/ul’, as cutoff time; the consequences of
Eq. (45) are therefore expected to be correct only qualita-

tively. The main virtue of Eq(45) is linearity, however: the
I','s are still Gaussian, with rms values 0of2/3(1
+2/))¥2 and the joint PDAI(T, ,I", ) for the correspond-

ing total strainl’, andI', =dI', /du is then accessible ana-
lytically (Appendix B. In particular, integration of

I(r, ,I“*) with respect to the last variable, then the use of

Eq. (43), produces the following PDF foh?:

2
+ —) ) (46)
yu

AZ |2

Aulv3

A2
Pa2(A%)~ —exp —
p2(A) M

Figure 16 compares the numerically computed PDF of

A?/u to Eq. (46), for different values ofu. The predicted
trend is correct and improves asincreases, as expected.
Next, merely replacing’?=(1+2/u) by (1+0.4/u) in Eq.
(46) produces a much better fit of the numerisse Fig. 1§
especially forA?/u above 2(for w=5) or 1 (for u=9).
Very plausibly, this is so because the actudlltering has an
O(1/ul' ) cutoff time instead of 4.

Mean FB lifetime vs A

Employing II(I', ,T",), deduced in Appendix B when
Eq. (45) holds, and Eq(43) (with & neglected in the Rice-
Kac formula(41) gives the estimate

Mean FB lifetime

Appendix A provides one with

2
_ nT
e ?(1+ 77)-1—0(—462),

Agrit: (48)
in the situations wher@g>1 andr>1 and theH,’s are not
filtered explicitly; in Eq. (48), 0<9=<O(u?°r % or
O(u¥"7~ 4" depending on whether*< 7> or u*>7°, re-
spectively(up to numerical factojsand 0< »<O(7 *?) at
crossoveru*~ 72,

From Eqgs.(47) and (48), our theoretical estimate of the

mean flame-ball lifetime is of the form
1 M
.

c kﬁ—ﬂwz
—35) ®U\

4pe’lv3
in that case. In Eq(49), c=+1, k=k'(1+7%)>1 and B
=0(7*7l4).

(Uite)~m~ (49

Comparison with numerics

The above prediction has the same functional form as Eqg.

(39), with a=k/ud, J=4€?/v3=17.06, k>1 and b=0.
Whereas our analyses give no numerical estimatey<sfL,
Eq. (49 is compatible with Eq(38), especially in view of

the computational constraints that prevented us from explor-

ing very large values of and/oru. Yet it is astonishing that
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3

< A

o8 =

s :

S S

-

4 5 6 7 8 9
n

FIG. 17. Probability density function @2 for x =10 as a func- FIG. 18. Ensemble averaged lifetin{eiro) as a function of

tion of A% u, for the filtered Ornstein-Uhlenbeck proces¢gs.  parameteru for Gaussian noises for=100 (bottom and r= 150

(39)]. The smoother line represents the fitting cundé/uxexp  (top), and corresponding fitting curvesolid lineg; see Eqgs(39)

—(A¥w)?202, with o= \/8/3. and(49) and also Fig. 12. The error bars, due the limited number of
realizations, are given by the height of the symbols.

the fit (38) of the numericaluiie)’s is compatible with the  with the samex(su) as in Eq.(19), but with a potential
functional form(49)... with c=—1 instead of+1; we could  \/(H) different from the previou$i?/2. Specifically, we as-
not explain the discrepancy. sumed

In the case of Gaussian stimuij(u), that are explicitly
filtered oncd Eq. (39)], anO(1/u) time lag betwee? and _ K
v still exists(see Fig. 14 but thek’ factor should be—and V(H)—Iog(z COSVEEH>)
indeed is—absent from the coefficiemin Eq. (38), because
w filtering does not remove any significant energy from theWhereby theH;’s have the new PDF
¥'s, the spectral power of which now decaysaais® at high
frequencies. This is confirmed by the comparison of 6) w(H)=> ————
with the computed PDF oA? at largeu (see Fig. 17. Also 2 cosk(zH)
the w2 factor should, and does, disappear from E4jl), 2
since they;’s are differentiable even without the filtering . ) 5 )
brought about by Eq23): finally, as indicated by EqAa12), ~ and hence still satisfyH;)=0, (H{) =1. Gaussian processes
nis now typically<O(1/r), wherebyk=1 in Eq.(49). This &€ def_lnltely different, and employing E¢p1) raises new
is still perfectly compatible with the numericsee Sec. d|ff|cult|e_s, that are evoked t_)elo_w. .
VC)... were it not for the fact that the exponentin the Even in absence of any flltgrlng, we could not determine
prefactor of Eq(49) needs again to be 1 instead of+1. the joint PDF of each pairH;,H;) that is no longer a mul-
We numerically checked that employing stimuli that arenvanate Gaussian. This prevented us from evaluating
explicitly filtered twice (the x;'s evoked at the end of Sec. II(I',I') and the integrand in Eq41). We propose the esti-
V C) did not change théu.) values any further, consis- Mmate
tently with our interpretation thak’—1 and 7 [see Eq. o
(A11)] are then even smalldiS(w)~w °]. Yet c=1 still f ITTL(T i , ) AT ~ PR(Tgri) (D22 (53
has to be replaced by 1. —

Equation (49), with c=—1, also correctly predicts the . . . . .
depgndency of o) ON u, at fixed, as eviger?ced in Fig. guided by the integrand in E@41) being non-negative and

18. by the identity P(I')=/"ZII(I',I')dI". This is an exact
result for Gaussiahl;’s (see Appendix B Put in words, Eq.
(53) neglects any conditioning df onT.
C. Non-Gaussian stimuli Unfortunately, even deriving®(I') analytically is mar-
ginally easy when Eq(51) holds; still, it is found(see Ap-
pendix Q that P(I'—0)~1I" and, more importantly,

(51

(52

The dependency diu;;s.) on 7andu relies on the Gauss-
ian characteristics of thid;’s. This begs the question of how

would the FB mean lifetime be modified upon replacing Eg.
(19) by Pr(l— +)~ exp( - —r) (54)
Hi(Up+ 1) —Hi(up) a n ; 2 i
50 ] +eix(ou), (500  to be compared withP(I'— +x)~T exp(~T'%2) in the
H=H;(uy) Gaussian case. In the presence of a linear filtering ofthe
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7.5 - ' ; ' ' terpretation agree thai) the statistics of FB lifetimest(s.)
] is of the Poisson typej(ii) the mean lifetime (tjife)

= 7(Ujife) tz May considerably exceed the tirie of spon-
taneous FB evolutiongjii ) the variations of uj;ze) with the
properties ofg fairly mirror the latter’s statistics, essentially

§ because individual FB extinctions probe the intermittency of
the velocity gradients.

Admittedly this was obtained for diagongis, and several
generalizations of the results presented here must be worked
out before any comparison with experiments is attempted:
. . . accounting explicity of a FB ignition instead of the
120 1'40 lgo 180 200 220 switch-on procedure adopted here, incorporating the effects

T of nondiagonal traceleggs, handling collective effects.
Nondiagonal, yet still symmetric, Lagrangian velocity

FIG. 19. Ensemble averaged lifetinfey;ic) as a function of  gragientsg(-) should not pose major problems: the kernel
parameterr for n.oanaussmn noises, fer=>5, and corresponding storage trick summarized in Eg@0) and (31) can be gen-
fitting curve[solid line, Eq.(55) with 7=0]. The error bars, due o 1ji704 15 anyg, and the approximation leading to E@3)
the finite number of realizations, are given by the height of the. . o
symbols, is amenable to a s_|mple generalization, becagls_eay be

assumed nearly diagonal about the current timethe

with anO(u) upper cutoff frequency, the RHS values of the squared totallstrail‘n“2 i§ then identifie.d with traggz)zo.

H.'s are still reduced by a factdrl +O(1/x)] (previously . Purely ant|symmetr|cg apparently is not a difficult case
denoteck’ in the Gaussian caeagain because E¢0) isa  €ither:g;;=—g;; in Eq. (15) producesb;;=(t—s)4;;, then
first-order Markov process, implying spectral power densi-A(u)=0 andA(u,v)=(u—wv)?, since rotating a spherically
ties that decay likeo 2 at large frequencies. Working along symmetric FB does not change its dynamics from the spon-
the same line—via Eq$43), (48), and(54)—as that leading taneous one. Yet, difficulties would then be encountered
to Eq. (49) in the Gaussian case, our new prediction on theabout the switch-on procedure, because the FB spontaneous

74t
6.5
6 F
55

Log <uy;s>

5»
45
4+

3.5

FB lifetime is thus dynamics only hask=0 andR— +« as stable attractors
[9]. This extreme situation points to the need for equipping
1 3 76 T Eg. (20) with some mathematical devi¢eamely, a positive
(Uire)~ ™ 7exp \[g 5z (1+ 77); (59 term \7f(u)/R added to the rhs of Eq20)] [9] so as to

trigger the growth ofR(u) from zero atu=0.
in absence of explicit filtering. The predicted linear depen- Handling g;;’s that have no special symmetry poses no
dency of lodujs) on 7u, and the slopgwith »<1), are  major numerical difficulty, but making analytical predictions

consistent with our numerical findings plotted in Fig. 19.  about them is notoriously difficuft17]: g(t) may occasion-
ally have a pair of complex-conjugate eigenvalues and the

required generalization of Agm~trace@?) is not patent.
Furthermore, it is not obvious at all which constraintsgyn
The evolution equatiori20) constitutes a rather unusual apart from tracelessness, need be imposed to ensure that the
dynamical system. It indeed simultaneously involves: a logat.agrangian rate-of-strain tensor actually follows from the in-
rithmic nonlinearity, a stochastic multiplicative forcidg u) compressible Navier-Stokes equatigas].
that is not white in time, and memory effects with a kernel Finally, the mean field approach taken up[it8] may
related toA(u) in a nontrivial way through Eq922) and  prove useful to mimic a “gas” of flame balls that are mutu-
(23). None of such peculiarities can be eliminated. TheéIpg ally interacting through conductive/diffusive processes; this
term comes from the highly convex—but unavoidable,would give access to the corresponding regime of “spotty”
Arrhenius factor in Egs(3) and(4); A(u) is autocorrelated turbulent combustion of mobile gaseous fuels. Yet the very
in time because the Lagrangian velocity gradignis; the  notion of a “mean-field” interaction requires a “sum over all
determinant of thé;;’s and the memory kernel are related to g;; (t) histories,” a difficulty of its own[20]. All this is under
the heat-loss functioA because all originated from the past study.
history of a FB being stored diffusively in temperature and Of course experiments would be welcomed, e.g., upon
mass fraction fields around it; an&(u) acts as a factor in firing a spark at the center of a spherical bomb of radius
Eqg. (20) because the far-field equations always are linearfilled with the gaseous premixture and where turbulence is
yielding Egs.(13) and (14). Very plausibly, the attractive sustained by spinning fans. Yet the following difficulty must
features are not alien to the difficulties we met when tryingnot be forgotten: since the flame ball center essentially ex-
to evaluate the reduced mean flame-ball lifetifng;.) ana-  ecutes a Brownian motion, it may approach the bomb wall
lytically. Only for quasisteady £>1), yet significant .  within anO(Zer) distance after a time-L?/D,;, — where
>1), forcings could the memory effect be considered shortDy,,= turbulent diffusivity — which can induce FB prema-
ranged and a simple link between total strélin and forcing  ture extinction[22] whenevel2/D,,, is not very large com-
function A(u) be identified. Then numerics and tentative in- pared to the expectediire)-

VIl. CONCLUDING REMARKS
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APPENDIX A: ON THE EXTINCTION CRITERION

Acrit
WhenA(u)/+/7 is O(1) andris large enough, we antici- \/;

pate that the variations d®(-) remainO(1) over anO(1)

interval of timeu—v. The LHS of Eq.(20) may then be  The difficulty as to exploit Eq(A5) is to evaluatd,|, and

treated as a perturbation A{u)/\/7=log R/R. This pertur-  decide when it has to be selected.

bation is singular ifA(u)<O(1), i.e., most of the time un- A more refined analysis of EqA4) proceeds by setting

lessu is also large, which we assume: the rapid decrease ok —e=(2e3\/7)(dy/ydu), which converts Eq(A4) into
1/AY%(u,v) for w(u—v)~0O(1) then allows one to write  the quantumlike problem:

—e '=xe¥a | A =0. (A5)

ifu R(u)—R(v) U=¢(U)d_R (A1) 2A% d?y Alug) 1) [Alug) =AW | _
J7l-= A™(uw) Jr du’ 7 du? Jr e Jr ’
(A6)
u (u-v) . 3 . . .
= A_l’z(u—v)dv' (A2)  with A=e>"\. The critical trajectoryR —e (decreasing but

not going to—«c in finite time) corresponds to the fundamen-
tal, hence nodeleg®1], solution to Eq.(A6). In the para-

The function ¢(u) generically is<O(x~ ). Note that, holic approximation that led to E4A5), 2~ exp(—w2(u
when u>1 and Eq.(43) holds, ¢(u) happens to be very —uyg)?) and

close to the formula
w?= 4| 2 r¥2A. (A7)
aa

=12 —1/2
e(u)=p" VT, (“)‘/7(2 +log 2)’ (A3) It thus transpires that a more accurate modeling should

chooseld,| as some average @, weighted by a function
which is actually exact in the steady case and when thahose spread depends..|ég| itself. The Rayleigh-Rit{21]
IT,|'s are in the ratios 1:1/2:1/2. One then deducesvariational method to estimate the lowest “energy-level”
e(WA(U)=(2/3)Y4(7+2 log 2=\, an approximation we A(up)/7—1/e, employed here with ¢°~exp(—w3(u
shall adopt here. —Up)?) as two-parameter trial function, confirms this view-

The aforementioned perturbation scheme also fails whepoint: it yields the two conditions

A(u)/\/7 approaches™?, becauselR/du, as predicted by a
guasisteady analysis, becomes too large to be neglected: a += dA(U)
temporal boundary layer exists around someu, (say), f_m du
where R(u)=e and A(u)/Jr=e ! [whence ¢
=\/(e"1\J7)]. We anticipate that the approximaticil) e d2A) du
and (A2) still holds. Expanding Eq(20) for R=e produces ” 2 2 _
a RiE:ca)ti ODE to Ieadi%g ordtgar: %20 P T A G )m\/—;—ao, (A9)

exp(— w?(u—Ug)?)w du =0, (A8)

Jar

A providedw? is written as in Eq(A7).
NE e ], (Ad) The allowedu, are maxima &,=<0) of A(u), once the
T latter has been filtered by?; and Eq.(A9) identifiesa, with
) o - ) ) the second derivative of thes-filtered version,a(u), of
to be solved with the “|n|t|_al" condition that its solutiof® A(u) at such points. Even once restricted by the constraints
—e would match the quasi-steady response soon enough bg-— o anda(ug) = \//e (this follows from the existence of a

fore u=u,. Foru—up>0 and large enough, two extreme 5 ng state Eqs. (A8) and (A9) allow for infinitely many
possibilities exist: eitherR—e decreases towards-oo, solutions (p,4o), in finite number per unit time.

shortly leading to extinction, ofR —e ultimately resumes Discarding all numerical factor@.g.,, 4€?, A2, ..), we

another phase of quasisteady behavior. The extinction criteﬁext approximatéao|z(a§)l’2 by (422 which is likely an

rion we are looking for corresponds to the properties thahpper bound because the constri8) and any cancelation

A(u) must fulfill aroundu=u, for the separatrix trajectory L .
to be observed. Clearlj\(u) must be close to a maximum of small scale variations oA are neglected. From the struc-
' ' ture of Eq.(A9), we further relatd42) to the spectral power

in some sense. Everything depends on the precise shape ;

A(u) aboutuy. In a rough approximation, we assume thatgjgns'tys(“’) of A(u) by

A(u)=A(ug) — 1/2&,|(u—up)? locally, where&,<O0 is the

second derivative of a suitably smoothed versionAgt), (82)~ me48(w)dw, (A10)
evaluated ati=ug. The critical trajectory is then found to 0

have R—-e=-{(u—ugy), with ¢=a positive constant

[whence Eq(Al) indeed hold$ Making this ansatz in Eq. where the upper limit follows from the effective range of
(A4) determines and leads tAA(ug) = Agit » With the Gaussian involved in EGA9).

X d(R—e) (R—e)?

rd(u—ug) 2e3
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For very smoothA(u)’s [e.g., deduced from thg;’s in-
troduced in Sec. V C, that ha¥ w>1)~ ™ ], the integral
in Eq. (A10) converges whatevess>1. Since(A%)~ u by
Eq. (43), the estimate

Acrit_ e_1~,LL
\/;

follows from Eqg.(A5), up to numerical constants.

For explicitly and u-filtered A(u)’s, S(w)~uw %/(1
+ w?/ u?) at frequencieso> 1, thereby producing a RHS of
Eq. (A10) of order u min(w,u); combining Egs.(A5) and
(A7) yields

1/47_— 5/4 (All)

P 8/7,

~\,, 12 54
MT T

Acrit
\/;

depending on whethen?> 7 or u?<r, again up to pure
numbers,

For stimuli that are not explicitly filteredimerely w fil-
tered; see Eq(19)], and haveS(w)~ pww ~%/(1+ w?/ u?) as
implied by Fig. 8 and Eq(36), similar asymptotics yields
(&%)~ uw min(w? u?); then, through Egs(A5) and (A7),
one gets

217
1 M

(A12)

,LLZ/ST_ 4/5

-~ M3/7T— 4/7,

-1

(A13)

depending on whethé®(u*)>or<O(7°%). As in Egs.(A11)
and (A12), the difficulties about comparing EGA13) to

numerics arise from the present neglect of all numerical con-

stants(some of which may be> 1 or <1), and from the

restricted range gf’'s and7’s that are accessible to extensive

numerical solutions of Eq20).

APPENDIX B: JOINT STATISTICS OF TOTAL STRAIN
AND ITS DERIVATIVE

Let K=(K, K5, K3) denote 3 independent, stationary

and Gaussian random processes., theH;’s, theh;’s or
the x;’s) with a common rms value. The notationK will

PHYSICAL REVIEW E 69, 036304 (2004

where the matrices) and L are orthogonal and such that
kaV3=K;+K,+Kjz, kav3=K,;+K,+Kj [32]. This choice
is motivated by the identifyy ?==3K?—1/3(23K;)? which

is Y2=k?+k3 in terms of the new variables. Equati¢B1)
becomes

dk,dk, dk,dk,
270

K2+k3 K2+k3
267 20

ex

270

(B3)

after Gaussian integrations ovies and ks; the integration
domain in Eq.(B3) is now Y<(k3+k3)¥?<Y+dY, Y

< (kik;+koko)/Y<Y+dY. Switching to the “polar” coor-
dinates ¢,6,f,6), with k;=r cos#, k,=r sin6, k=t cosé
—r@siné,... (the Jacobian of which change ig), finally

yieldsII(Y,Y) in the form

exp(—Y?/2Q)

(2 re) ) 172 (B4)

YZ
ﬁ)

: Y
I(Y,Y)= ?exr< -

after simple integrations over the angleg Ze). Notice that
I1(Y,Y) is here proportional tgTI(Y,Y)dY=Py(Y).

APPENDIX C: PDF OF TOTAL STRAIN IN A
NON-GAUSSIAN CASE

When the independent nois&s=(K,, K,, K3) follow
Eqg. (52), the PDF,Py(Y) of the corresponding total strain
results from the integral

sz |H31 (exp(%Ki

over the domaifY <(Y2+Y3+Y3)Y?<Y+dY, with Y;'s
defined in terms of thé;'s analogously to Eq(18). We

T -1
+exp( —EKi)) dK (C)

stand for theitu derivatives, assumed to have the same uppefake a change of variables as in EB2), with a matrixU

cutoff frequency Q) [e.g., O(x) or O(1)]. Defining Y
=(Yi+ Y3+ Y52 with Y;=K;—37K;/3 in analogy with

consisting of ¢1,2,1)A6, (1,012 and (1,1,)/3 as
mutually orthogonal, normed column vectors. An elementary

Eqg. (18), we are here interested in the joint probability de“'integration overX=exp((7/2)(k3/v3)) convertsV into an

sity II(Y,Y) of Y and of Y=dY/du.
By definitionII1(Y,Y)dYdY is the integral

[ dK dK p(
M= (2’7T0'2)3/2 (2W9)3/2ex

K-K K-K
207 20
(B1)

extended to the domailf <(Y3+Y3+Y2)¥><Y +dY, Y
<(Y Y1+ Y,Yo+ YY)/ Y<Y+dY.
To evaluateM, we first set

K=Uk, K=LKk, (B2)

integral over K;,k;), extended to the domain($(k§
+k3)Y?<Y+dY. Passing to polar coordinates ultimately
producesPy(Y) as

B 2 V3
PY(Y)‘YL (Xet %) (X Xa) (Xat X) 00"
2

with X;=exp((7Y/\/6)cos@¢—6)) and 6;=(—m/3,0:/3),
Wherebe1X2X3E 1.
ForY—0, Py(Y)~Y. ForY—~, the integrand in Eq.
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(C2) quickly reduces to~min(X;))/max(X;), except in — (\67/4)Y) results from integration of the latter.

O(1/Y) neighborhoods of its maxima @m/6, m=0...5, GaussiarK;'s are atypical in the sense that in the analog
mod 2m), where twoX;'s cross and the integrand is locally of Eq. (C2) the integrand is independent 6f the prefactor
rounded into sech] functions: Py(Y—»)~exp( (=Y) does not disappear frofy (Y —=) any longer.
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