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Lifetimes of flame balls dragged by model turbulent flows: Role of velocity gradient fluctuations
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~Received 1 October 2003; published 25 March 2004!

An isolated combustion spot—known as a flame ball~FB!—is considered while it is advected by a turbulent
flow of a lean premixture of such a light fuel as hydrogen. A Batchelor approximation for the surrounding
Lagrangian flow is made. This in principle gives one an access to the FB lifetimet l i f e and to its response to the
ambiant Lagrangian rate-of-strain tensorg(t), by means of a nonlinear and forced integro-differential equation
for the current FB radius. For a diagonalg(t) deduced from random Markov processes of the Ornstein-
Uhlenbeck type, or linearly filtered versions thereof, extensive numerical simulations and approximate theo-
retical analyses agree that~i! flame balls can definitely live for much longer than their time of spontaneous
expansion/collapse;~ii ! large enough values oft l i f e are compatible with Poisson statistics;~iii ! the variations of
^t l i f e& with the characteristics ofg(t) mirror the latter’s statistics, more precisely that of trace(g2). Open
problems, dealing with a nondiagonalg(t), ignition-related transients and/or collective effects, finally are
evoked.

DOI: 10.1103/PhysRevE.69.036304 PACS number~s!: 47.70.2n, 47.27.2i, 05.45.2a, 02.50.2r
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I. INTRODUCTION

For all its practical implications@1–3#, the turbulent burn-
ing of premixed gases is a central topic in combustion s
ence. Also, its modelling still constitutes a theoretical ch
lenge, because of the many space/time scales and the va
nonlinearities~reaction rates, hydrodynamics, radiation! in-
volved.

The current models of turbulent combustion in gases@1#
invoke flamelets as building blocks, namely locally lamin
flame fronts idealized as surfaces convected by the fresh
bulent medium and propagating relative to it at a norm
velocity comparable to the burning speed (SL) of a steady
flat flame. Balancing convection of fresh gas normal to
flamelet with heat conduction~the propagation mechanism!
and chemistry classically @2# yields the estimates
Dth /tch(Tb) and Dth /SL for SL and the actual flame thick
ness, respectively. In these,Dth is the fresh gas diffusivity
and tch(Tb) represents the characteristic time of chemi
heat release evaluated at the burnt gas temperatureTb in a
flat flame.

Whenever the turbulent velocity fluctuationsV and the
corresponding gradientsV/ l at scalel of maximum dissipa-
tion cease to satisfyl @Dth /SL andV/ l !1/tch(Tb), flamelet
models cease to be viable, however. Broadened flame
well-stirred local reactors@1#, are usually alluded to when
modeling such situations. When the deficient reactant is
bile enough to have a molecular diffusion coefficientD well
aboveDth ~Lewis number, Le[Dth /D.0.20– 0.30 for hy-
drogen@H2# in air!, another issue is conceivable. It wou
involve the localized three-dimensional combustion spots@3#
known as flame balls~FB! as building blocks. The basic FB
corresponding to spherically symmetric and convection-f
balances between diffusions of heat and reactant and ch
cal heat release has a reaction temperatureTR of T* .Tb if
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Le,1 @3#. This and the self-explanatory estimater Z
2

;Dthtch(T* ) for the radiusr Z of this localized combustion
spot make it plausible that a FB ofO(r Z) size could resist
turbulent stimuli a flamelet would not:tch(T* )!tch(Tb) if,
as is usual, the Zel’dovich number Ze;2] log tch/] logTR is
large whencetch(TR) is strongly sensitive to the reactio
temperatureTR . Hence the notion of envisaging FBs as b
sic ‘‘objects’’ dragged by the flow for the premixed combu
tion of light fuels under conditions of vigorous turbulent st
ring.

The basic~i.e., adiabatic and convection-free! FB is un-
stable, however@3,4#: it spontaneously tends to shrink the
extinguish, or to expand radially and evolve into a th
propagating front@5#. Stabilizing processes have been ide
tified and can preclude such trends@6,7#. They share a com-
mon structural property: they all makeTR slightly decrease,
with a dTR[TR2T* ,0 and at least linear in the current F
radiusr F(t). The net result is thatr F may ultimately settle at
a larger value thanr Z . For very lean/diluted H2-air premix-
tures, the radiation losses do the job, enabling FB’s to
observed up to 80 minutes at microgravity@8#. With less
diluted and/or with preheated mixtures, the radiative cool
time would be too long compared totch(T* ) to achieve FB
stabilization. Whence apparently little hope is left for FBs
be thought of as sensible starting points to model
strongly turbulent combustion of light fuels.

Yet a localized combustion spot ofO(r Z) size advected
by a turbulent flow, Fig. 1, also feels theO(V/ l ) velocity
gradients in the surrounding fresh mixture; because heat
reactant transports respond differently to nonunifor
unsteady flowfield if Le,1, this affectsdTR hence the FB
dynamics. As shown in@5#, the order-of-magnitude estimat
dTR /T* ;(D21/22Dth

21/2)(V/ l )1/2r F,0 holds true if l
@r F . Thus, the interesting distinguished limit to consid
has V/ l;Ze22Dthr Z

22, because this yieldsdTR /T* ;Ze21

and hence fully exploits the nonlinearity of thetch(TR) law.
Also, havingdTR,0 and linear inr F almost brings one back
to a familiar situation.
©2004 The American Physical Society04-1
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The above estimates imply that the spatial scaleV/(V/ l )
; l , where flowfield nonuniformity effectively plays a role
is large@of orderO(Ze r F)] compared to the FB size. Thi
scale separation enabled one@5# to show that not-too-intens
combinations ofsteadyshears, strains, and flow rotations c
effectively stabilize a FB atr F /r Z5O(1). Thanks to the fact
that the time of spontaneous evolution ofr F about r Z is
O(Ze2r F

2/Dth)@r F
2/Dth @9#, implying quasisteady evolution

of the FB core, the conclusion was recently extended to F
embedded in periodic or quasiperiodic uniform shearing
straining motions ofO(Dth /Ze2r Z

2) strengths: the integro
differential, nonlinear evolution equation~EE! derived forr F
in @10# then allowed for limit cycles~or kins! as attractors
corresponding to infinitely long-lived flame balls, as first e
denced numerically and by formal asymptotics@10#, then
rigorously proved@11#.

To get closer to the physical situation depicted in Fig.
we consider here the dynamics of an isolated FB subjecte
random, yet again spatially uniform like in@10#, velocity
gradients. The motivation is as follows: occasionally lar
values of the rate-of-strain tensor that a FB embedded
turbulent flow experiences can possiblyalwayslead to extin-
guishment, contrary to bounded periodic/quasiperio
stimuli.

Since the EE recently established forr F @10# involves
memory kernels, the very possibility of a fluctuation-induc
limitation of FB lifetimes raises the question: how to initia
the dynamics. This ‘‘past-boundary-difficulty’’ could b
eliminated upon explicitly accounting for an ignition devic
~or a mathematical analog thereof in the EE!. Unfortunately,
the resulting dynamics is not easily interpreted if no info
mation about the intrinsic role of velocity fluctuations
available beforehand. To display the latter in an as pure
possible way, we shall here content ourselves with studyin
switch-on problem: the velocity-gradient fluctuations are
tificially suppressed for all negative times then restoredt
50 and allowed to influence the subsequent dynamics.
EE for r F(t), once properly discretized and solved, giv
numerical access to the individual FB histories, then to th
statistics.

The paper is organized as follows. The physical model
a flame ball is presented in Sec. II, along with a sketch of
derivation that leads to an evolution equation~EE! for the FB
radius. Section III is devoted to the generation of rand
velocity gradients and to the switch-on procedure. The

FIG. 1. An isolated flame ball advected by a turbulent flow.
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merical method to solve the EE is summarized in Sec. IV.
Sec. V, we report on raw numerical findings: memory k
nels, heat-loss functions, FB trajectories and lifetimes, a
statistics thereof; these are compared to tentative theore
interpretations in Sec. VI. Section VI C aims at extending
this to non-Gaussian velocity gradients. We end up with c
clusions and open problems.

II. MODEL AND EVOLUTION EQUATION

Like in @10#, we envisage a turbulent premixture of
deficient mobile fuel~e.g., H2) and of an abundant oxidize
~e.g., air!, and focus attention on an isolated flame b
dragged@23,24# by the turbulent motions~see Fig. 1!.

The selected combustion process is the one-step irrev
ible reaction ‘‘F→products1heat,’’ whereF stands for the
fuel. Its volumetric rate of consumptionw will follow the
Arrhenius law:

w~T,y!5ry exp~2Ta /T!/tcoll ~1!

that involves a collision timetcoll and an activation tempera
ture Ta large compared to all the temperaturesT encoun-
tered. The mixture density is denotedr and is assumed to
vary like 1/T. The fuel mass fraction isy.

The mass and energy conservations and the fuel bala
are respectively written as

] tr1“•~rv!50, ~2!

rc~] tT1v•“T!5l“2T1Qw~T,y!, ~3!

r~] ty1v•“y!5rD“

2y2w~T,y!, ~4!

In Eqs. ~2!–~4!, Q is the heat of reaction,] t(•) denotes
differentiation in timet andv is the local velocity vector in
the Cartesian framex5(x1 ,x2 ,x3) attached to the flame ba
centerr[uxu50. We consider the specific heatc, the heat
conductivity l and the productrD of density by the fuel
diffusivity D as prescribed constants. The Lewis number
5Dth /D5l/rDc is thus constant and assumed to be ma
edly less than one~e.g., LeH2-air.0.20– 0.3). Far from the
flame ball, we require

y~1`,t !5yu , ~5!

T~1`,t !5Tu , ~6!

v~8`8,t !→g~ t !•x[v`, ~7!

whereyu andTu are given, and ‘‘̀ ’’ in Eq. ~7! means ‘‘for
r @r F(t), ’’ r F being the current flame ball radius.

The rate of strain tensorg, of elementsgi j (t), satisfies the
incompressibility condition

trace~g![“•v`50 ~8!

for the sake of compatibility with Eqs.~7! and ~2!, and is
assumed to vanish on time average:

gi j ~ t !50. ~9!
4-2
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The present work next considers thegi j ’s to berandomfunc-
tions of time, with a common autocorrelation timetcor and
identical PDFs.

In absence of any flow (v50) and for steady configura
tions, Eqs. ~2!–~7! admit the first-integrallT1rDyQ
[lTu1rDyuQ. Settingy to zero in it defines the referenc
reaction temperatureT* 5Tu1(Tb2Tu)/Le whereTb5Tu
1Qyu /c is the final temperature in a flat flame propagati
in a fresh mixture that hasy5yu , T5Tu . In the limit Ze
[Ta(Tb2Tu)/T

*
2 →1` of large Zel’dovich numbers we

again adopt here, the steady convection-free flame ball
chemical activity confined to a thin spherical shellr 2r Z
5O(r Z /Ze) with ~see@5,10# and the references therein!

2r F
25D~TR!tcollS Ta~Tb2Tu!

TR
2 D 2

expS Ta

TR
D ~10!

and, here,TR5T* and hencer F5r Z . Such a flame ball is
unstable@4# and the typical timetZ for spontaneous evolu
tions of r F2r Z is tZ5Ze2r Z

2/Dth if 0 ,12Le5O(1) and
Ze@1 @9#, hence is long compared to the conduction tim
r Z

2/Dth . Insofar as their reaction-shell radiusr F(t) remains
O(r Z), flame balls evolving overO(tZ) time scale have a
quasi steady near-fieldr 5O(r F), where unsteadiness an
convection may be neglected@5,10#; the convection due to
] tr FÞ0 may also be neglected in the far fieldr 5O(Ze r F)
whereT.Tu andy.yu and unsteadiness@and imposed con-
vection if g(t)Þ0] plays a role. Matching the near-field an
far-field profiles ofT and y reveals that Eq.~10! still holds
for the currentr F(t), providedTR is shifted fromT* to T*
1dTR , with

dTR5dT`1~T* 2Tu!dy` /yu . ~11!

In Eq. ~11!, dT` and dy` are displacements, induced b
unsteadiness and/or forced convection in the far field, of
ambient temperature and fuel mass fraction actually felt
the flame ball core. The correspondingr F(t), given by Eq.
~10! if dTR /T* 5O(Ze21), reads

~r F /r Z!25expS 2
dTR

T*

Ta

T*
D ~12!

to leading order. Provided the velocity gradientsgi j (t) fea-
tured in Eq.~7! are O(tZ

21) and evolve on thetcor5O(tZ)
scale, Eq.~12! holds and the fact thatg is not identically zero
contributes todTR at the same order as unsteadiness. As fi
shown in @12# the then linear@r.ru , negligible w(T,y)]
Eqs. ~3! and ~4! can be solved analytically in the far-fiel
when Eq.~7! holds, with the leading order matching cond
tions: (T2Tu)r→(T* 2Tu)r F and (y2yu)r→2yur F as
r /Ze→01. Through two-term matchings, this altogeth
yields @10#

~4pD th!
1/2dT`

T* 2Tu
52E

2`

t

dsF r F~ t !

~ t2s!3/22
r F~s!

:1/2~ t,s!G ,
~13!
03630
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~4pD !1/2dy`

yu
51E

2`

t

dsF r F~ t !

~ t2s!3/22
r F~s!

:1/2~ t,s!G , ~14!

where:(t,s) is the determinant of an auxiliary symmetr
tensorb(t,s), defined by the coupled ODE’s~with the usual
convention on repeated indices!

] tbi j 5d i j 1gil bl j 1bil gjl for t>s,

bi j ~ t,s!5~ t2s!d i j 1¯ for t5s10. ~15!

Note thatbi j [(t2s)d i j and:(t,s)[(t2s)3 for gi j [0; this
also holds true ifgi j 52gji . Substitution of Eqs.~13! and
~14! into Eq. ~11! then Eq.~12! yields @10# the evolution
equation forr F(t):

logS r F~ t !

r Z
D5Ze

12ALe

2Le

1

~4pDth!1/2

3E
2`

t F r F~ t !

~ t2s!3/22
r F~s!

:1/2~ t,s!Gds ~16!

in which the nonzero tensorg intervenesvia the solution
b(t,s) to system~15!. Notice that despite the formal symme
try between Eqs.~13! and ~14!, and Eq.~11!, dTR does not
vanish when 0,12Le5O(1), so that r F may differ from
r Z without violating the working assumptions employed
derive Eq.~16!.

In the general caseg is nonsymmetric. Its skew-
symmetric part is known@10,12# to make the influence of the
straining parts milder on such displacements asdT` , dy`

anddTR . The effects are thus maximum whengi j 5gji . For
analytical convenience, we further restrict ourselves tog
5diag„g1(t),g2(t),g3(t)…, with g11g21g350 by Eq. ~8!,
corresponding to pure straining motions. Equation~15! can
then be formally solved forb(t,s)—which is also diagonal
in this case—by quadratures.

III. NOISES

A. Random rates of strain

The strain rates are written in the form

gi~ t !5
m

tcor
G i S t

tcor
D , ~17!

where tcor>O(tZ) is their common correlation time. Th
G i ’s areO(1) and dimensionless,m is a pure number, mea
suring the intensity of thegi ’s in 1/tcor units. For a solid-
body rotation,umu52p. For the sake of definiteness,m.0
is assumed. Settingt/tcor5u, theG i ’s are computed as

G i5Hi2
1

3
~H11H21H3! ~18!

from three independent Ornstein-Uhlenbeck@13,22# stochas-
tic processesHi(u) @25#; the latter are numerically generate
by means of the recursions
4-3



i-

r

a

to

he

y

se

if

d

-
the
he

is
of

t

Y. D’ANGELO AND G. JOULIN PHYSICAL REVIEW E 69, 036304 ~2004!
Hi~un11!2Hi~un!

du
52

Hi~un!

1
1« i

nk~du! ~19!

wheredu is the scaled time step,un5ndu, k(du)[„3/du
3(22du)…1/2 and the« i

n are random numbers sampled un
formly over @21; 11#, independently ofn and i; for un<u
<un11 , the Hi(u) are assumed piecewise linear, and a
continuous at the mesh pointsuj .

For ndu@1, the Hi are Gaussianly distributed@26,13#,
have unit variance, zero time and ensemble averages,
their autocorrelation function is exp(2uuu) @and hence their
temporal spectral density is;(11v2)21]. By Eq. ~18!, the
G i ’s sum to zero, are Gaussian with a common rms value
(2/3)1/2, and are also exponentially autocorrelated.

B. Nondimensional evolution equation

Setting r F5r ZR(u) and usingu as dimensionless time
variable converts Eq.~16!—after some rearrangements—in

E
2`

u R~u!2R~v !

D1/2~u,v !
dv5At logR2A~u!R, ~20!

in which all the relevant physico-chemical properties of t
gaseous mixture are lumped into the single parametert

t54p
tcor

tZ
S 2Le

12ALe
D 2

, tZ[Ze2r Z
2/Dth . ~21!

This grouping essentially measurestcor in units of tZ/4p,
since 2Le512ALe for Le50.25. Should the quasistead
limit t@1 be considered later on, the limitm@1 would also
be needed, as the velocity gradients would otherwise cea
influence the FB dynamics@see Eq.~17!# for R<O(1). The
symbolD(u,v) is a scaled version of the determinant:(t,s)
of the b tensor featured in Eqs.~13!–~16!; in the present
case, it can be explicitly derived as

D~u,v !5)
i 51

3 E
v

u

expS 22mE
u

w

G i~j!dj D dw ~22!

once the incompressibility condition( i 51
3 G i50 is made use

of. As shown in @10#, D(u,v) is strictly larger than (u
2v)3 for u.v, whenever all theG i ’s are not identically
zero. The scaled heat-loss functionA(u).0, appearing in
Eq. ~20!, is defined by

A~u!5E
2`

u S 1

~u2v !3/22
1

D1/2~u,v ! Ddv. ~23!

It would assume the constant valueA(0)5AmI , with

I[E
0

1`S 12)
i 51

3

F„G i~0!w…Dw23/2dw, ~24!

F~Z!5~Z/sinhZ!1/2, ~25!
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if the G i ’s were constants@[G i(0)#. Equation~20! would
then admit constant solutionsR’s @5R(0)# given by the
rootsR6 ~with 1<R2<e andR1>e) of the equation

A~0!

At
5

logR

R
, ~26!

that exist if and only ifA(0)<At exp(21); see Fig. 2: too
strong, steady strain rates will quench a flame ball, e.g.,m
is too large@indeed,A2(0)/t;(m/t) then simply measures
the intensity of thegi(0)’s; see Eq.~17!#. For future refer-
ence notice that—as first suggested in@12#—the integral
I „G1(0), G2(0), G3(0)… featured in the RHS of Eq.~24! is
close to a function of the ‘‘total strain’’

G[@G1
21G2

21G3
2#1/2 ~27!

only, here evaluated atu50. We numerically ascertaine
that, whenG11G21G350 as required by Eq.~8!, the inte-
gral I is almost undistinguishable from the formula

I 2~G1 , G2 , G3!.A8

3
G, ~28!

that actually is exact when theuG i u ’s are in the ratios 1:1/
2:1/2 @sinceI (1, 1/2, 1/2)5&].

IV. NUMERICS, PAST BOUNDARY DIFFICULTY

A. Fluctuation switch-on

Whereas the lower boundv52` in the LHS of Eq.~20!
poses no convergence problem@D(u,v).(u2v)3#, the use
of randomGaussianHi ’s implies that one of them may oc
casionally take on a large absolute value, at which times
G i ’s may also get large for long enough to extinguish t
flame ball. The net result is thatR(u) cannot live for infi-
nitely long and, in particular, cannot have lived sinceu5
2`.

To cure this past-boundary difficulty, that in a sense
analogous to the cold-boundary difficulty in the theory
steady planar premixed flames@1#, the following procedure

FIG. 2. Static response curve: the equationA(0)/At5 log R/R
admits two solutions ifA(0),At exp(21). Too strong constan
strain rates quench a flame ball, ifA2(0)/t.e22.
4-4
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of fluctuation switch-on was devised. For a given sam
triplet @G1(u), G2(u), G3(u)#, we made the substitution
G i(u)→G̃ i(u) with

G̃ i~u!5G i~0! for u<0, G̃ i~u!5G i~u! for u>0,
~29!

along with the corresponding changes in Eqs.~22! and~23!.
In particular, the modified heat-loss functionÃ(u<0) is
equal toA(0) for negative times, as it is given by Eq.~24!.
For negative times, the dimensionless flame ball rad
R(u<0) was chosen to be the larger~hence stable@11#! root
R1 of Eq. ~26!, if any. WheneverA(0).At exp(21), a new
triplet of G i(u)’s was sampled afresh. This ‘‘fluctuatio
switch-on’’ procedure is analogous to rendering the chem
time infinite below an ignition temperature~assumed to be
crossed at the coordinate origin! in premixed-flame theory
@1#.

BecauseD21/2(u,v) decreases rapidly asu2v increases
~see Fig. 3!, implying rapidly fading memory effects, th
transient resulting from the reintroduction of fluctuations
expected to be short@0,u<O(m21)# and negligible at the
scale of the flame ball lifetimeuli f e , especially ifuli f e@1.

B. Random processes

Handling the recursion~19! poses no particular problem
provided one makes sure it has started long enough be
u50, so that theHi ’s have already forgotten the initial con
ditions. Our numerical simulations employed 104 ‘‘blank’’
steps, with adu of 1022. As the latter is meant to be smalle
than all the relevant time scales of the problem, in particu
(u2v)5O(1/m) ~see Sec. VI!, m’s larger than 10 could no
be handled at reasonable CPU costand in a reliable way.

C. Kernel storage

Even though an explicit expression forD(u,v) is avail-
able, Eq.~22!, better numerical accuracy and stability were
first found upon directly integrating the differential syste
~15!. However, if this procedure were applied abruptly, t

FIG. 3. Sample memory kernelsD21/2(u,v) for two values of
current timeu, andm55. The fast decrease with increasingu2v is
worth noticing.
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calculation ofD(u,v) for long timesu andv would require
to store a two-variable array with several tens of thousa
elements in both time variables, for each realization of
Hi ’s, before any attempt at solving Eq.~20!. This storage
difficulty can be circumvented once one has noticed t
D(u,v) in Eq. ~22! can be written as D(u,v)
5P i 51

3 D i(u,v), and that theD i(u,v) are also accessible
from the differential system

]D i

]v
52Ã i

2~u,v !, D i50 at v5u, ~30!

]Ã i

]v
52mG̃ i~v !Ã i~u,v !, Ã i51 at v5u. ~31!

In these ODEs, integration is performed with respect tov
<u, at fixed u, whereby no two-variable array at all needs
stored prior to the resolution of Eq.~20!.

D. Integrating the evolution equation

To integrate the evolution equation~20! for the dimen-
sionless FB radiusR, we proceed as follows. The differentia
system~30! and ~31! is advanced in time thanks to a mult
step, variable-coefficient, stiff ODE solver@14#. The left-
hand side of Eq.~20! is split into two integrals, for negative
and positivev respectively; for negativev, R(v)[R1 @see
Eq. ~26!#. These two terms can then be processed as

E
2`

u R~u!2R~v !

D1/2~u,v !
dv

5„R~u!2R1…E
2`

0

D21/2~u,v !dv

1R~u!E
0

u2du

D21/2~u,v !dv

2E
0

u2du R~v !

D1/2~u,v !
dv1E

u2du

u R~u!2R~v !

D1/2~u,v !
dv.

~32!

For numerical consistency, the integration is first perform
from 2` to u2du wheredu is the time step size. The las
integral in Eq.~32! can be evaluated as

E
u2du

u R~u!2R~v !

D1/2~u,v !
dv.2„R~u!2R~u2du!…/Adu.

~33!

The scaled heat-loss functionA(u) defined by Eq.~23! can
also be split into parts:

A~u!5E
2`

0 1

~u2v !3/2dv2E
2`

0 1

D1/2~u,v !
dv

1E
0

uS 1

~u2v !3/22
1

D1/2~u,v ! Ddv. ~34!
4-5
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The first term of the right-hand side of Eq.~34! equals 2/Au.
The second term already appeared in Eq.~32!. For a given
discretization timeun11 , we approximate the third integra
in the right-hand side~RHS! of Eq. ~32! assumingR(v) to
be piecewise linear~betweenuk and uk11). The integrals
involving D21/2(un11 ,v) are also computed by means of th
trapezoidal rule@i.e., assumingD21/2(un11 ,v) piecewise lin-
ear betweenvk and vk11]. Last, the evolution equation i
discretized semi-implicitly in time: the linear terms a
treated implicitly @i.e., with R(u) evaluated at timeun11]
whereas the nonlinear terms are treated explicitly@i.e., with
R(u) evaluated at timeun]. At anyone time step, this proce
dure leads to a linear equation forRn11 , the coefficients of
which depend on the whole past history ofR. Notice that the
integrals inv involving the kernelD21/2(un11 ,v) need be
reevaluated at each new meshpoint, since the kernel ex
itly depends on the currentun11 .

Whenu2v equals one or a few time step~s! du, evaluat-
ing the integrals as above is not accurate enough. We
had to subcycle the time stepping procedure with a sma
step sizedusc , equal to a fraction~1/10 or 1/20! of du.

E. Benchmark

In order to validate the whole numerical procedure,
applied it to a benchmark where an analytical solution can
found for A(u) if R(u) and the kernel are givena priori.
Namely, we choose to solve the equation

E
2`

u

„R~u!2R~v !…W~u2v !dv5At logR2A~u!R,

~35!

with R(u)5R1211cos(u). If W(u2v)[(u2v)23/2, the
expression forA(u) then involves~tabulated! sine and cosine
Fresnel integrals. Retrieving the knownR(u) from thatA(u)
was the test successfully passed by the procedure~30!–~32!.

V. RAW RESULTS

A. Memory kernels and heat-loss functions

Figure 4 illustrates how the reduced memory kernelu

FIG. 4. Sample reduced memory kernelsK(u,v)[(u
2v)3/2/D1/2 for two values of current timeu ~same runs as in Fig
3!.
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2v)3/2/D1/2[K(u,v) varies with v<u at different fixed
positiveu, making it clear that the memory kernel involve
in the LHS of Eq.~20! fades much more quickly than in
absence of velocity gradients@K(u,v)[1 for mG i[0], es-
pecially whenumu is large; the latter trend, meaning that ra
dom incompressible straining flows of increasing intensit
have better and better mixing properties, is illustrated in F
5, in terms of the ensemble average^K(u,v)& of the memory
kernel for different values ofm. Notice thatK(u,v)→12 as
v→u2. Indeed, one can show from Eq.~22! or Eqs.~30! and
~31! that 12K(u,v);m2(u2v)2( i 51

3 G i
2(u) in this limit,

which suggested to us thatu2v5O(1/m) is the right range
of memory effects for large enoughm’s. As compared to the
spontaneous dynamics@9#, wherein a 1/2-order derivative
was involved@D1/2(u,v)5(u2v)3/2 then#, the linear opera-
tor in the LHS of Eq.~20! is here closer to a ‘‘thickened’
first-order derivative@see Eq.~A1! of Appendix A#.

A sample heat-loss function@27# A(u) is displayed in Fig.
6 and compared to one of theG i ’s that yielded it: due to the
integration steps involved in Eqs.~30! and ~31! then Eq.
~23!, A(u) is smoother than theG i ’s. Whereas theHi ’s have

FIG. 5. Ensemble average of the reduced memory ke
K(u,v) vs u2v, for different values ofm.

FIG. 6. Time evolution of sample flame-ball radius~R!, heat-
loss function~A!, and first reduced rate-of-strainG1(u) for m55
andt5100. Notice thatR andA are anticorrelated, whilst the cor
relation betweenA and uG1u is positive at largeuG1u ’s.
4-6
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exp(2uu2u8u) as autocorrelation function, that ofA2

2^A2&, GA2(j[uu2u8u) is more regular atu;u8. ~See also
Fig. 7.! The autocorrelation functionGA2(j) turns out to be
almost undistinguishable~see Fig. 8! from

GA2~j!5GA2~0!
m exp~2nj!2n exp~2mj!

m2n
, ~36!

with n.2 and GA2(0)5O(m) for large enoughm’s. The
corresponding spectral ‘‘energy’’ densityS(v) is then pro-
portional to m/(11v2/n2)(11v2/m2). Put in words,GA2

happens to nearly coincides with the normalized autoco
lation functionGG of G2^G&, provided theG i ’s are filtered
with an O(m) cutoff frequency, a process henceforth des
nated as ‘‘m filtering,’’ otherwise,GG(j) turns out be very
close to exp(2nuju). Strictly speaking one should distinguis
a total strain deduced fromm-filteredG i ’s, from am-filtered

FIG. 7. Sample squared heat-loss functionA2 ~top! and total
rate-of-strainG[@G1

21G2
21G3

2#1/2 ~bottom! vs time u. Notice the
positive correlation between both functions, and the small delayA2

is late! between them.~To ease readibility, each curve has a diffe
ent vertical scale.!

FIG. 8. Numerical autocorrelation functionGA2(j) of the
squared heat-loss functionA2 ~dashed line! for m59. The solid line
represents the fitting function@see text, Eq.~36!#. The agreement is
even better for 5<m,9.
03630
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G; numerical simulations gave us ample evidence that
difference is immaterial whenm is large enough.

That such a simple fit as Eq.~36! works so well is sur-
prising, in view of the nonlinear operations~22! and ~23!
needed to getA(u) from theHi(u); anyway, this is compat-
ible with anO(1/m) range of memory effects.

B. FB-radius trajectories and statistics of lifetimes

As illustrated in Fig. 9, a flame ball cannot live for infi
nitely long; R(u) eventually shrinks to zero at some fini
time uli f e , that depends on the parameterst @Eq. ~21!#, m
@Eq. ~17!#, and on the specific realization of theHi(u)’s.

Figure 10 shows histograms ofuli f e at fixed values ofm
~55! and t ~5100!, and for many~52992! realizations of
the Hi(u)’s. Let ^uli f e& denote the ensemble average of t
uli f e’s; as shown in Fig. 10, the fit

P~uli f e!5
1

^uli f e&
expS 2

uli f e

^uli f e& D ~37!

FIG. 9. Sample time evolution of a flame-ball radiusR. The FB
radius shrinks to zero~extinction! at a finite time. The dashed hori
zontal line representsR5e, which R(u) occasionally crosses for a
short while.

FIG. 10. Numerical probability density function of lifetime
P(uli f e) for m55 andt5100~vertical bars!. The solid curve is the
exponential fit given by Eq.~37!. The finite duration of the FB
quenching process is visible at smalluli f e’s.
4-7
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Y. D’ANGELO AND G. JOULIN PHYSICAL REVIEW E 69, 036304 ~2004!
satisfactorily represents the PdfP(•) of uli f e , as soon as
uli f e exceeds 2–5. The variations of^uli f e& with t for m
55 are shown in Fig. 11~some computed̂uli f e& ’s for other
m’s and fort5100 and 150 are also displayed!. For m55, it
turns out for that the results can be accurately fitted by

^uli f e&5exp„a~t2b!21c logt1C…, ~38!

with a5(k/mJ)2, J.17, k51.275, b.0, c51, and C5
23.185@28#.

The very fast growth of̂uli f e& with t, at fixedm, is worth
noticing: for m55, we could not make statistically signifi
cant calculations beyondt5160, in which casêuli f e& is of
about 1850 and requires several weeks of CPU for 110 r
on a 2.4 GHz PC. Besides,^uli f e& decreases rapidly asm
increases, especially at larget’s ~see Fig. 11!.

C. Explicitly-filtered noises

To evaluate the influence of the smoothness of the rand
entries, we repeated the above procedure, replacing
Ornstein-Uhlenbeck processesHi ’s by more regular ones
now denotedhi ’s. To this end, we applied a first-order low
pass filter, with a unit cutoff time, to theHi ’s before calcu-
lating theG i ’s ~then denotedg i ’s). The ODE’s for thehi ’s
are

ḣi52
hi

1
1&Hi , ~39!

where ḣi[dhi /du and the piecewise linearHi ’s are still
computed according to Eq.~19!; to ensure that thehi ’s ~or
the x i ’s evoked below! have the correct regularity at th
mesh points, the numerical code was provided with anal
cal integration formulas forhi(un11)2hi(un). Equations
~39! being linear, thehi ’s they define are still centere
Gaussian processes, with^hi

2&51. Their common autocorre
lation function isGh(j);(11uju)exp(2uju), the correspond-

FIG. 11. Ensemble-averaged lifetime^uli f e& as a function of
parametert, for m55 ~symbols! and corresponding fitting curve
@solid line, Eq.~38!#. The ^uli f e& ’s corresponding tot5100 and
150 and the listed differentm’s are also represented. The error ba
resulting from the finite number of realizations are given by
height of the symbols.
03630
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ing spectral density being;(11v2)22. The resulting
^uli f e& is exhibited in Figs. 12 and 13 as a function oft, m.
Interestingly, the fitting curveagain is given by Eq.~38!, yet
with k51; parameterC is now 22.85 instead of23.185;
parametersb andc have the same numerical values of 0 a
1, respectively.

Going one crank further, i.e., definingx i ’s from thehi ’s
by equations similar to Eq.~39! ~with the last term replaced
by hiA4/3 to ensurêx i

2&51), did not change the above fit o
^uli f e& significantly, even though eachx i ’s spectral power
density is now;(11v2)23.

VI. TENTATIVE INTERPRETATIONS

A. PDF of lifetimes

Because of the very structure of Eq.~24!, the response of
R(u) to the fluctuating heat-loss function~A or Ã) is not
local in time. However, the fast decay ofD21/2(u,v) with
increasingu2v implies a localized response: only the im

FIG. 12. Ensemble-averaged lifetime^uli f e& as a function of
parametert, for m55 and explicitly filtered stimuli, and corre
sponding fitting curve@solid line, Eq. ~38! with k51 and C5
22.85]; compare to Fig. 11. The error bars resulting from the fin
number of realizations are given by the height of the symbols.

FIG. 13. Ensemble averaged lifetime^uli f e& as a function of
parametert, for m510, and corresponding fitting curve@solid line,
Eq. ~38! with k51 and C524.1], for explicitly filtered stimuli.
The error bars, due the finite number of realizations, are given
the height of the symbols.
4-8
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LIFETIMES OF FLAME BALLS DRAGGED BY MODEL . . . PHYSICAL REVIEW E 69, 036304 ~2004!
mediate pastu2v!1 matters. As a consequence, one m
admit that a localized criterion for extinction would exist; th
latter will depend ont, m and A(u) in some neighborhood
@<O(1)# of the times it is met, but, on average, not on t
precise times this occurs, if the possibility is a rare even

Let 1/U be the average rate at which this may occur~we
implicitly assumeU@1[the correlation time of theHi ’s).
Since a flame ball extinguishes only once,P(uli f e)duli f e is
the probability that the extinction criterion would be fulfille
in the interval@uli f e ;uli f e1duli f e@ for the first time; accord-
ingly P(uli f e) must satisfy

P~uli f e!duli f e5S 12E
0

uli f e
P~u!duD duli f e

U , ~40!

the first factor in the RHS expressing that extinction did n
take place prior touli f e . Equation~40! yieldsP(uli f e) in the
same form as Eq.~37!, provided^uli f e&[U:1/̂ uli f e& is thus
identified with the probability per unit time~PUT! 1/U, as-
sumed to be independent@29# of uli f e , that the extinction
criterion be met byA(u) @30#. Note that the rms fluctuation
of uli f e about ^uli f e& is ^uli f e& itself when Eq.~37! holds.
The error bars in Figs. 11–13 merely correspond to the
certainty (;^uli f e&/AN) on ^uli f e& brought about by the
numberN of numerical runs being finite.

B. Dependence ofŠulife‹ on noise properties

The foregoing tentative interpretation of Eq.~38! rests on
a result established by Rice@15# and Kac@16#: the probabil-
ity 1/U per unit time that a stationary random processX(u)
would cross a thresholdXcrit satisfies

1

U;E
2`

1`

uẊuP~Xcrit ,Ẋ!dẊ, ~41!

whereP(X,Ẋ) is the joint probability density ofX and Ẋ
[dX/du. Whenever the crossing is a rare event, e.g., w
Xcrit lies in the tail of the PDF ofX, Eq. ~41! also gives the
PUT that max(X)>Xcrit , up to a factor of 1/2. Our presen
strategy is to try and apply Eq.~41! to X5A2(u) assuming
that the criterion for FB extinction would correspond toA2

.Acrit
2 ; a way of estimatingAcrit

2 itself is presented in Ap-
pendix A.

Relating A„u… to the G i„u… ’s

The above approach first requires to relate the statistic
A(u) to theG i(u)’s that generate it. The way the integran
appearing in Eq.~23! varies withu2v and u ~cf. Fig. 15!
makes it clear that the heat-loss functionA(u) becomes
larger whenever 1/D1/2(u,v) fades over a shorteru2v lapse
of time. Inspection of Eq.~22! reveals that at least one of th
u2mG i u ’s must get momentarily large to achieve this. Gene
cally this occurs when 2m@1 ~a reasonable assumptio
since 2m510– 20) and/or one@31# of the uHi u ’s ~or hi or x i
in the explicitly filtered cases! noticeably exceeds their com
mon rms value; in the latter instance theumG i u ’s are in the
ratios 1:1/2:1/2@see Eq.~18!# within O(1/mG) fractional er-
03630
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rors, with G(u) defined by Eq.~27!. In the formal limit m
→1` we exploit here, only the immediate past 0,u2v
;1/m significantly contributes to the dependency ofA(u) on
the G i(u)’s. We then expand the inner integrals in Eq.~22!
as

mE
u

w

G i~j!dj5mG i* ~u!~w2u!1O„Ġ i* ~u!m~w2u!2
….

~42!

In Eq. ~42!, G i* (u) stands forG i(u) once averaged over a
O(1/m) interval of time precedingu and hence representsG i
evaluated at someu* in this interval @0,u2u*
5O(1/m)#. The averaging brings about anO(m) upper cut-
off frequency, and hence reduces the rms value of theG i* ’s
below (2/3)1/2 by anO(1/m) amount, since theG i ’s spectral
power density decreases likev22 at high frequenciesv.

FIG. 14. Sample squared heat-loss functionA2 ~top; thick line!
and total rate-of-straing[@g1

21g2
21g3

2#1/2 ~bottom; thin line! in
the filtered-noise case. The correlation betweenA2 and g is more
apparent than in Fig. 7. Some filtering still exists betweeng andA2,
and the latter is again slightly late with respect tog(u). ~As in Fig.
7, each curve was scaled differently to ease readibility.!

FIG. 15. Sample integrand 1/(u2v)3/221/D1/2(u,v) @Eq. ~23!#
of the scaled heat-loss functionA(u), as a function ofv, for a fixed
time u520 and form55. Note the maximum atm(u2v).1.
4-9
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Next, performing the outer integrals in Eq.~22! produces
to leading order the sameI (G1* ,G2* ,G3* ) as in Eq.~24!,
now evaluated in terms of theG i* (u). Employing Eq.~28!,
one gets~see Figs. 7 and 14!.

A2~u!

mA8

3

.G* ~u!1«~u!, ~43!

with a delayed and filtered total strainG* (u) defined analo-
gously to Eq.~27!. The term«(u) in Eq. ~43!, stemming
from the RHS in Eq.~42!, is certainly nonnegative forA(u)
may vanish if and only if all theG i ’s identically do, and is
formally o(1) in the limit m→`. More precisely,

«~u!;(
i

bi~G i* ,G2* ,G3* !
Ġ i*

mG i*
, ~44!

with bi5O(1).
As an attempt to reduce the influence of«(u) in Eq. ~43!,

and better specify the aforementioned delayu2u* , we
chose to make the approximation that theG i* ’s would sat-
isfy

a

m
Ġ i* 52G i* 1G i , 0,a5O~1!. ~45!

Compatibility with Eq. ~36! then requireda.1 once Eq.
~43!, with «(u) neglected, is made use of. We are fully awa
that a more sensible modeling of them-filtering process
would employa/mG* as cutoff time; the consequences
Eq. ~45! are therefore expected to be correct only qual
tively. The main virtue of Eq.~45! is linearity, however: the
G i* ’s are still Gaussian, with rms values of„2/3(1
12/m)…1/2 and the joint PDFP(G* ,Ġ* ) for the correspond-
ing total strainG* andĠ* [dG* /du is then accessible ana
lytically ~Appendix B!. In particular, integration of
P(G* ,Ġ* ) with respect to the last variable, then the use
Eq. ~43!, produces the following PDF forA2:

PA2~A2!;
A2

m
expX2S A2

4m/)
D 2S 11

2

m D C. ~46!

Figure 16 compares the numerically computed PDF
A2/m to Eq. ~46!, for different values ofm. The predicted
trend is correct and improves asm increases, as expecte
Next, merely replacingk82[(112/m) by (110.4/m) in Eq.
~46! produces a much better fit of the numerics~see Fig. 16!,
especially forA2/m above 2~for m55) or 1 ~for m59).
Very plausibly, this is so because the actualm filtering has an
O(1/mG* ) cutoff time instead of 1/m.

Mean FB lifetime vs Acrit

Employing P(G* ,Ġ* ), deduced in Appendix B when
Eq. ~45! holds, and Eq.~43! ~with « neglected! in the Rice-
Kac formula~41! gives the estimate
03630
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f

1

^uli f e&
;m1/2

Acrit
2

m
expF2S k8Acrit

2

4m/)
D 2G ~47!

for ^uli f e&5U corresponding to a presumedAcrit . Recall that
them1/2 factor in Eq.~47! comes from theO(m) upper cutoff
frequency brought about by the averaging overu2v
5O(1/m) in Eq. ~43!; and 0,k82215O(1/m) comes from
the frequencies overO(m) having been filtered out from
G i ’s that have;v22 power spectral densities atv>O(1).

Mean FB lifetime

Appendix A provides one with

Acrit
2 .te22~11h!1OS h2t

4e2 D , ~48!

in the situations wherem@1 andt@1 and theHi ’s are not
filtered explicitly; in Eq. ~48!, 0,h<O(m2/5t24/5) or
O(m3/7t24/7) depending on whetherm4!t3 or m4@t3, re-
spectively~up to numerical factors!, and 0,h<O(t21/2) at
crossoverm4;t3.

From Eqs.~47! and ~48!, our theoretical estimate of th
mean flame-ball lifetime is of the form

^uli f e&;m21/2S m

t2b D c

expF S k~t2b!

4me2/)
D 2G ~49!

in that case. In Eq.~49!, c511, k5k8(11h).1 and b
5O(h2t/4).

Comparison with numerics

The above prediction has the same functional form as
~38!, with a5k/mJ, J54e2/).17.06, k.1 and b.0.
Whereas our analyses give no numerical estimate ofh!1,
Eq. ~49! is compatible with Eq.~38!, especially in view of
the computational constraints that prevented us from exp
ing very large values oft and/orm. Yet it is astonishing that

FIG. 16. Probability density functions ofA2 for m55 ~bottom!
and m59 ~top! as a function ofA2/m. ~To ease readability, we
artificially shifted the curves.! The fitting curves are proportional to
A2/m3exp2(A2/m)2/2s2, with s258/33(112/m)21 ~dashed
lines! and s258/33(110.4/m)21 ~thick solid lines!. Notice that
the quality of the fits improves asm grows.
4-10
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LIFETIMES OF FLAME BALLS DRAGGED BY MODEL . . . PHYSICAL REVIEW E 69, 036304 ~2004!
the fit ~38! of the numerical̂ uli f e& ’s is compatible with the
functional form~49!... with c521 instead of11; we could
not explain the discrepancy.

In the case of Gaussian stimulihi(u), that are explicitly
filtered once@Eq. ~39!#, anO(1/m) time lag betweenA2 and
g still exists ~see Fig. 14!, but thek8 factor should be—and
indeed is—absent from the coefficienta in Eq. ~38!, because
m filtering does not remove any significant energy from t
g i ’s, the spectral power of which now decays asv24 at high
frequencies. This is confirmed by the comparison of Eq.~46!
with the computed PDF ofA2 at largem ~see Fig. 17!. Also
the m1/2 factor should, and does, disappear from Eq.~47!,
since theg i ’s are differentiable even without them filtering
brought about by Eq.~23!; finally, as indicated by Eq.~A12!,
h is now typically<O(1/t), wherebyk.1 in Eq.~49!. This
is still perfectly compatible with the numerics~see Sec.
V C!... were it not for the fact that the exponentc in the
prefactor of Eq.~49! needs again to be21 instead of11.

We numerically checked that employing stimuli that a
explicitly filtered twice~the x i ’s evoked at the end of Sec
V C! did not change thêuli f e& values any further, consis
tently with our interpretation thatk821 and h @see Eq.
~A11!# are then even smaller@S(v);v26#. Yet c51 still
has to be replaced by21.

Equation ~49!, with c521, also correctly predicts the
dependency of̂uli f e& on m, at fixedt, as evidenced in Fig
18.

C. Non-Gaussian stimuli

The dependency of^uli f e& on t andm relies on the Gauss
ian characteristics of theHi ’s. This begs the question of how
would the FB mean lifetime be modified upon replacing E
~19! by

Hi~un11!2Hi~un!

du
52

]V

]HU
H5Hi ~un!

1« i
nk~du!, ~50!

FIG. 17. Probability density function ofA2 for m510 as a func-
tion of A2/m, for the filtered Ornstein-Uhlenbeck processes@Eq.
~39!#. The smoother line represents the fitting curve:A2/m3exp
2(A2/m)2/2s2, with s5A8/3.
03630
.

with the samek(du) as in Eq.~19!, but with a potential
V(H) different from the previousH2/2. Specifically, we as-
sumed

V~H !5 logX2 coshS p

2
H D C ~51!

whereby theHi ’s have the new PDF

PH~Hi !5
1

2

1

coshS p

2
Hi D ~52!

and hence still satisfŷHi&50, ^Hi
2&51. Gaussian processe

are definitely different, and employing Eq.~51! raises new
difficulties, that are evoked below.

Even in absence of any filtering, we could not determ
the joint PDF of each pair (Hi ,Ḣ i) that is no longer a mul-
tivariate Gaussian. This prevented us from evaluat
P(G,Ġ) and the integrand in Eq.~41!. We propose the esti
mate

E
2`

1`

uĠuP~Gcrit ,Ġ !dĠ;PG~Gcrit !^~ Ġ !2&1/2, ~53!

guided by the integrand in Eq.~41! being non-negative and
by the identity PG(G)[*2`

1`P(G,Ġ)dĠ. This is an exact
result for GaussianHi ’s ~see Appendix B!. Put in words, Eq.
~53! neglects any conditioning ofĠ on G.

Unfortunately, even derivingPG(G) analytically is mar-
ginally easy when Eq.~51! holds; still, it is found~see Ap-
pendix C! that PG(G→0);G and, more importantly,

PG~G→1`!;expS 2
pA6

4
G D ~54!

to be compared withPG(G→1`);G exp(2G2/2) in the
Gaussian case. In the presence of a linear filtering of theHi ’s

FIG. 18. Ensemble averaged lifetime^uli f e& as a function of
parameterm for Gaussian noises fort5100 ~bottom! and t5150
~top!, and corresponding fitting curve~solid lines!; see Eqs.~38!
and~49! and also Fig. 12. The error bars, due the limited numbe
realizations, are given by the height of the symbols.
4-11
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Y. D’ANGELO AND G. JOULIN PHYSICAL REVIEW E 69, 036304 ~2004!
with anO(m) upper cutoff frequency, the RHS values of th
Hi ’s are still reduced by a factor@11O(1/m)# ~previously
denotedk8 in the Gaussian case!, again because Eq.~50! is a
first-order Markov process, implying spectral power den
ties that decay likev22 at large frequencies. Working alon
the same line—via Eqs.~43!, ~48!, and~54!—as that leading
to Eq. ~49! in the Gaussian case, our new prediction on
FB lifetime is thus

^uli f e&;m21/2expFA3

8

pA6

4e2 ~11h!
t

mG , ~55!

in absence of explicit filtering. The predicted linear depe
dency of loĝulife& on t/m, and the slope~with h!1), are
consistent with our numerical findings plotted in Fig. 19.

VII. CONCLUDING REMARKS

The evolution equation~20! constitutes a rather unusu
dynamical system. It indeed simultaneously involves: a lo
rithmic nonlinearity, a stochastic multiplicative forcingA(u)
that is not white in time, and memory effects with a kern
related toA(u) in a nontrivial way through Eqs.~22! and
~23!. None of such peculiarities can be eliminated. The log~•!
term comes from the highly convex—but unavoidab
Arrhenius factor in Eqs.~3! and ~4!; A(u) is autocorrelated
in time because the Lagrangian velocity gradientg is; the
determinant of thebi j ’s and the memory kernel are related
the heat-loss functionA because all originated from the pa
history of a FB being stored diffusively in temperature a
mass fraction fields around it; andA(u) acts as a factor in
Eq. ~20! because the far-field equations always are line
yielding Eqs. ~13! and ~14!. Very plausibly, the attractive
features are not alien to the difficulties we met when try
to evaluate the reduced mean flame-ball lifetime^uli f e& ana-
lytically. Only for quasisteady (t@1), yet significant (m
@1), forcings could the memory effect be considered sh
ranged and a simple link between total strain~G! and forcing
function A(u) be identified. Then numerics and tentative i

FIG. 19. Ensemble averaged lifetime^uli f e& as a function of
parametert for non-Gaussian noises, form55, and corresponding
fitting curve @solid line, Eq.~55! with h50]. The error bars, due
the finite number of realizations, are given by the height of
symbols.
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terpretation agree that~i! the statistics of FB lifetimes (t l i f e)
is of the Poisson type;~ii ! the mean lifetime ^t l i f e&
[t^uli f e& tZ may considerably exceed the timetZ of spon-
taneous FB evolutions;~iii ! the variations of̂ uli f e& with the
properties ofg fairly mirror the latter’s statistics, essentiall
because individual FB extinctions probe the intermittency
the velocity gradients.

Admittedly this was obtained for diagonalg’s, and several
generalizations of the results presented here must be wo
out before any comparison with experiments is attempt
accounting explicitly of a FB ignition instead of th
switch-on procedure adopted here, incorporating the effe
of nondiagonal tracelessg’s, handling collective effects.

Nondiagonal, yet still symmetric, Lagrangian veloci
gradientsg~•! should not pose major problems: the kern
storage trick summarized in Eqs.~30! and ~31! can be gen-
eralized to anyg, and the approximation leading to Eq.~43!
is amenable to a simple generalization, becauseg may be
assumed nearly diagonal about the current timeu: the
squared total strainG2 is then identified with trace(g2)>0.

Purely antisymmetricg apparently is not a difficult case
either: gi j 52gji in Eq. ~15! producesbi j 5(t2s)d i j , then
A(u)[0 andD(u,v)5(u2v)3, since rotating a spherically
symmetric FB does not change its dynamics from the sp
taneous one. Yet, difficulties would then be encounte
about the switch-on procedure, because the FB spontan
dynamics only hasR50 andR→1` as stable attractors
@9#. This extreme situation points to the need for equipp
Eq. ~20! with some mathematical device@namely, a positive
term At f (u)/R added to the rhs of Eq.~20!# @9# so as to
trigger the growth ofR(u) from zero atu50.

Handling gi j ’s that have no special symmetry poses
major numerical difficulty, but making analytical prediction
about them is notoriously difficult@17#: g(t) may occasion-
ally have a pair of complex-conjugate eigenvalues and
required generalization of A2/gm;trace(g2) is not patent.
Furthermore, it is not obvious at all which constraints ong,
apart from tracelessness, need be imposed to ensure tha
Lagrangian rate-of-strain tensor actually follows from the
compressible Navier-Stokes equations@18#.

Finally, the mean field approach taken up in@19# may
prove useful to mimic a ‘‘gas’’ of flame balls that are mut
ally interacting through conductive/diffusive processes; t
would give access to the corresponding regime of ‘‘spot
turbulent combustion of mobile gaseous fuels. Yet the v
notion of a ‘‘mean-field’’ interaction requires a ‘‘sum over a
gi j (t) histories,’’ a difficulty of its own@20#. All this is under
study.

Of course experiments would be welcomed, e.g., up
firing a spark at the center of a spherical bomb of radiuL
filled with the gaseous premixture and where turbulence
sustained by spinning fans. Yet the following difficulty mu
not be forgotten: since the flame ball center essentially
ecutes a Brownian motion, it may approach the bomb w
within anO(Zer Z) distance after a time;L2/Dturb — where
Dturb[ turbulent diffusivity — which can induce FB prema
ture extinction@22# wheneverL2/Dturb is not very large com-
pared to the expected̂t life&.

e
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APPENDIX A: ON THE EXTINCTION CRITERION

WhenA(u)/At is O(1) andt is large enough, we antici
pate that the variations ofR~•! remainO(1) over anO(1)
interval of time u2v. The LHS of Eq.~20! may then be
treated as a perturbation ofA(u)/At5 logR/R. This pertur-
bation is singular ifA(u)<O(1), i.e., most of the time un-
lessm is also large, which we assume: the rapid decreas
1/D1/2(u,v) for m(u2v);O(1) then allows one to write

1

At
E

2`

u R~u!2R~v !

D1/2~u,v !
dv.

w~u!

At

dR
du

, ~A1!

w[E
2`

u ~u2v !

D1/2~u,v !
dv. ~A2!

The function w(u) generically is<O(m21/2). Note that,
when m@1 and Eq.~43! holds, w(u) happens to be very
close to the formula

w~u!.m21/2G
*
21/2~u!&S p

2
1 log 2D , ~A3!

which is actually exact in the steady case and when
uG i* u ’s are in the ratios 1:1/2:1/2. One then deduc
w(u)A(u).(2/3)1/4(p12 log 2)[l, an approximation we
shall adopt here.

The aforementioned perturbation scheme also fails w
A(u)/At approachese21, becausedR/du, as predicted by a
quasisteady analysis, becomes too large to be neglecte
temporal boundary layer exists around someu5u0 ~say!,
where R(u).e and A(u)/At.e21 @whence w
.l/(e21At)]. We anticipate that the approximation~A1!
and ~A2! still holds. Expanding Eq.~20! for R.e produces
a Riccati ODE to leading order:

l

t

d~R2e!

d~u2u0!
.2

~R2e!2

2e3 2S A~u!

At
2e21D , ~A4!

to be solved with the ‘‘initial’’ condition that its solutionR
2e would match the quasi-steady response soon enough
fore u5u0 . For u2u0.0 and large enough, two extrem
possibilities exist: eitherR2e decreases towards2`,
shortly leading to extinction, orR2e ultimately resumes
another phase of quasisteady behavior. The extinction c
rion we are looking for corresponds to the properties t
A(u) must fulfill aroundu5u0 for the separatrix trajectory
to be observed. Clearly,A(u) must be close to a maximum
in some sense. Everything depends on the precise sha
A(u) aboutu0 . In a rough approximation, we assume th
A(u).A(u0)21/2uä0u(u2u0)2 locally, whereä0,0 is the
second derivative of a suitably smoothed version ofA(u),
evaluated atu5u0 . The critical trajectory is then found to
have R2e52z(u2u0), with z[a positive constan
@whence Eq.~A1! indeed holds#. Making this ansatz in Eq
~A4! determinesz and leads toA(u0)5Acrit , with
03630
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Acrit

At
2e215le3/2uä0u1/2t25/4>0. ~A5!

The difficulty as to exploit Eq.~A5! is to evaluateuä0u, and
decide when it has to be selected.

A more refined analysis of Eq.~A4! proceeds by setting
R2e5(2e3l/t)(dc/cdu), which converts Eq.~A4! into
the quantumlike problem:

2L2

t2

d2c

du2 1cF S A~u0!

At
2

1

eD 2S A~u0!2A~u!

At
D G50,

~A6!

with L5e3/2l. The critical trajectoryR2e ~decreasing but
not going to2` in finite time! corresponds to the fundamen
tal, hence nodeless@21#, solution to Eq.~A6!. In the para-
bolic approximation that led to Eq.~A5!, c2;exp„2Ã2(u
2u0)2

… and

Ã25uä0u1/2t3/4/2L. ~A7!

It thus transpires that a more accurate modeling sho
chooseuä0u as some average ofÄ0 weighted by a function
whose spread depends...onuä0u itself. The Rayleigh-Ritz@21#
variational method to estimate the lowest ‘‘energy-leve
A(u0)/At21/e, employed here with c2;exp„2Ã2(u
2u0)2

… as two-parameter trial function, confirms this view
point: it yields the two conditions

E
2`

1` dA~u!

du
exp„2Ã2~u2u0!2

…Ã
du

Ap
50, ~A8!

E
2`

1` d2A~u!

du2 exp„2Ã2~u2u0!2
…Ã

du

Ap
5ä0 , ~A9!

providedÃ2 is written as in Eq.~A7!.
The allowedu0 are maxima (ä0<0) of A(u), once the

latter has been filtered byc2; and Eq.~A9! identifiesä0 with
the second derivative of theÃ-filtered version,a(u), of
A(u) at such points. Even once restricted by the constra
ä0<0 andA(u0)>At/e ~this follows from the existence of a
bound state! Eqs. ~A8! and ~A9! allow for infinitely many
solutions (u0 ,ä0), in finite number per unit time.

Discarding all numerical factors~e.g.,p, 4e2, L2, ...!, we
next approximateuä0u[(ä0

2)1/2 by ^ä2&1/2, which is likely an
upper bound because the constraint~A8! and any cancelation
of small scale variations ofÄ are neglected. From the struc
ture of Eq.~A9!, we further relatê ä2& to the spectral power
densityS(v) of A(u) by

^ä2&;E
0

Ã

v4S~v!dv, ~A10!

where the upper limitÃ follows from the effective range o
the Gaussian involved in Eq.~A9!.
4-13
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For very smoothA(u)’s @e.g., deduced from thex i ’s in-
troduced in Sec. V C, that haveS(v@1);v26], the integral
in Eq. ~A10! converges whateverÃ@1. Since^A2&;m by
Eq. ~43!, the estimate

Acrit

At
2e21;m1/4t25/4 ~A11!

follows from Eq.~A5!, up to numerical constants.
For explicitly and m-filtered A(u)’s, S(v);mv24/(1

1v2/m2) at frequenciesv@1, thereby producing a RHS o
Eq. ~A10! of order m min(Ã,m); combining Eqs.~A5! and
~A7! yields

Acrit

At
2e21; H m2/7t28/7,

m1/2t25/4, ~A12!

depending on whetherm2@t or m2!t, again up to pure
numbers,

For stimuli that are not explicitly filtered@merely m fil-
tered; see Eq.~19!#, and haveS(v);mv22/(11v2/m2) as
implied by Fig. 8 and Eq.~36!, similar asymptotics yields
^ä2&;mÃ min(Ã2,m2); then, through Eqs.~A5! and ~A7!,
one gets

Acrit

At
2e21; H m2/5t24/5,

m3/7t24/7, ~A13!

depending on whetherO(m4).or,O(t3). As in Eqs.~A11!
and ~A12!, the difficulties about comparing Eq.~A13! to
numerics arise from the present neglect of all numerical c
stants~some of which may be@ 1 or !1!, and from the
restricted range ofm’s andt’s that are accessible to extensiv
numerical solutions of Eq.~20!.

APPENDIX B: JOINT STATISTICS OF TOTAL STRAIN
AND ITS DERIVATIVE

Let K5(K1 , K2 , K3) denote 3 independent, stationa
and Gaussian random processes~e.g., theHi ’s, the hi ’s or
the x i ’s) with a common rms values. The notationK̇ will
stand for theiru derivatives, assumed to have the same up
cutoff frequency V @e.g., O(m) or O(1)]. Defining Y
[(Y1

21Y2
21Y3

2)1/2, with Y i5Ki2( j
3K j /3 in analogy with

Eq. ~18!, we are here interested in the joint probability de
sity P(Y,Ẏ) of Y and ofẎ[dY/du.

By definition P(Y,Ẏ)dYdẎ is the integral

M5E dK

~2ps2!3/2

dK̇

~2pV!3/2expS 2
K•K

2s2 2
K̇•K̇

2V
D

~B1!

extended to the domainY<(Y1
21Y2

21Y3
2)1/2<Y1dY, Ẏ

<(Ẏ1Y11Ẏ2Y21Ẏ3Y3)/Y<Ẏ1dẎ.
To evaluateM, we first set

K5Uk, K̇5Lk̇ , ~B2!
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where the matricesU and L are orthogonal and such tha
k3)5K11K21K3 , k̇3)5K̇11K̇21K̇3 @32#. This choice
is motivated by the identifyY2[(1

3Ki
221/3((1

3K j )
2 which

is Y25k1
21k2

2 in terms of the new variables. Equation~B1!
becomes

M5E dk1dk2

2ps2

dk̇1dk̇2

2pV
expS 2

k1
21k2

2

2s2 2
k̇1

21 k̇2
2

2V
D

~B3!

after Gaussian integrations overk3 and k̇3 ; the integration
domain in Eq. ~B3! is now Y<(k1

21k2
2)1/2<Y1dY, Ẏ

<( k̇1k11 k̇2k2)/Y<Ẏ1dẎ. Switching to the ‘‘polar’’ coor-
dinates (r ,u, ṙ ,u̇), with k15r cosu, k25r sinu, k̇15 ṙ cosu

2ru̇ sinu,... ~the Jacobian of which change isr 2), finally
yields P(Y,Ẏ) in the form

P~Y,Ẏ !5
Y

s2 expS 2
Y2

2s2D exp~2Ẏ2/2V!

~2pV!1/2 ~B4!

after simple integrations over the angles (u,u̇). Notice that
P(Y,Ẏ) is here proportional to*P(Y,Ẏ)dẎ[PY(Y).

APPENDIX C: PDF OF TOTAL STRAIN IN A
NON-GAUSSIAN CASE

When the independent noisesK5(K1 , K2 , K3) follow
Eq. ~52!, the PDF,PY(Y) of the corresponding total strai
results from the integral

V5E )
i 51

3 XexpS p

2
Ki D1expS 2

p

2
Ki D C21

dK ~C1!

over the domainY<(Y1
21Y2

21Y3
2)1/2<Y1dY, with Y i ’s

defined in terms of theKi ’s analogously to Eq.~18!. We
make a change of variables as in Eq.~B2!, with a matrixU
consisting of (21,2,1)/A6, ~1,0,21!/& and ~1,1,1!/) as
mutually orthogonal, normed column vectors. An element
integration overX5exp„(p/2)(k3 /))… convertsV into an
integral over (k1 ,k2), extended to the domainY<(k1

2

1k2
2)1/2<Y1dY. Passing to polar coordinates ultimate

producesPY(Y) as

PY~Y!5YE
0

2p )

~X11X2!~X21X3!~X31X1!
du,

~C2!

with Xj5exp„(pY/A6)cos(u2uj)… and u j5(2p/3,0,p/3),
wherebyX1X2X3[1.

For Y→0, PY(Y);Y. For Y→`, the integrand in Eq.
4-14
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~C2! quickly reduces to ;min(Xj)/max(Xj), except in
O(1/Y) neighborhoods of its maxima (2pm/6, m50...5,
mod 2p!, where twoXj ’s cross and the integrand is local
rounded into sech(•) functions: PY(Y→`);exp„
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2(A6p/4)Y… results from integration of the latter.
GaussianKi ’s are atypical in the sense that in the anal

of Eq. ~C2! the integrand is independent ofu: the prefactor
~[Y! does not disappear fromPY(Y→`) any longer.
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